A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of Night, Day and 24 h Motor Activity Data for the Classification of Depressive Episodes. | LitMetric

Major Depression Disease has been increasing in the last few years, affecting around 7 percent of the world population, but nowadays techniques to diagnose it are outdated and inefficient. Motor activity data in the last decade is presented as a better way to diagnose, treat and monitor patients suffering from this illness, this is achieved through the use of machine learning algorithms. Disturbances in the circadian rhythm of mental illness patients increase the effectiveness of the data mining process. In this paper, a comparison of motor activity data from the night, day and full day is carried out through a data mining process using the Random Forest classifier to identified depressive and non-depressive episodes. Data from Depressjon dataset is split into three different subsets and 24 features in time and frequency domain are extracted to select the best model to be used in the classification of depression episodes. The results showed that the best dataset and model to realize the classification of depressive episodes is the night motor activity data with 99.37% of sensitivity and 99.91% of specificity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7151064PMC
http://dx.doi.org/10.3390/diagnostics10030162DOI Listing

Publication Analysis

Top Keywords

motor activity
16
activity data
16
night day
8
classification depressive
8
depressive episodes
8
data mining
8
mining process
8
data
7
comparison night
4
motor
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!