The paper explores the possibility of covering the mortar with the lightweight aggregate by the nanopolymer silane and siloxane as surface hydrophobisation. The investigation involved the mortars with two types of hydrophobic agents diluted with water in a ratio of 1:4 and 1:8. Mortar wetting properties were determined by measuring the absorbability, water vapor diffusion, contact angle (CA) and surface free energy (SFE) of their structure. Surface micro-roughness and 2D topography were evaluated. Scanning electron microscopy (SEM) has shown the microstructure and distribution of pores in mortars. The reduction in absorbency after the first day of testing by 87% was shown. An improvement in frost resistance after 25 cycles by 97% and an 18-fold decrease in weight loss after the sulphate crystallization test were observed. The hydrophobic coating reduces the SFE of mortars and increases the CA. In the case of using silanes, a 9-fold increase CA was observed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143614PMC
http://dx.doi.org/10.3390/ma13061350DOI Listing

Publication Analysis

Top Keywords

surface
4
surface modification
4
modification lightweight
4
mortars
4
lightweight mortars
4
mortars nanopolymers
4
nanopolymers improve
4
improve water-repellency
4
water-repellency durability
4
durability paper
4

Similar Publications

Developing sustainable structural materials to replace traditional carbon-intensive structural materials fundamentally reshapes the concept of circular development. Herein, we propose an interface engineering strategy that utilizes water as a liquid medium to replace the residual air within natural wood. This approach minimizes the absorption of water-based softening agents by microcapillary channels of wood, enabling the controlled softening of the cell walls.

View Article and Find Full Text PDF

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

A new twofold interpenetrated 3D metal-organic framework (MOF), namely, poly[[μ-aqua-diaqua{μ-2,2'-[terephthaloylbis(azanediyl)]diacetato}barium(II)] dihydrate], {[Ba(CHNO)(HO)]·2HO}, (I), has been assembled through a combination of the reaction of 2,2'-[terephthaloylbis(azanediyl)]diacetic acid (TPBA, HL) with barium hydroxide and crystallization at low temperature. In the crystal structure of (I), the nine-coordinated Ba ions are bridged by two μ-aqua ligands and two carboxylate μ-O atoms to form a 1D loop-like Ba-O chain, which, together with the other two coordinated water molecules and μ-carboxylate groups, produces a rod-like secondary building unit (SBU). The resultant 1D polynuclear SBUs are further extended into a 3D MOF via the terephthalamide moiety of the ligand as a spacer.

View Article and Find Full Text PDF

Digital muscle reconstructions have gained attraction in recent years, serving as powerful tools in both educational and research contexts. These reconstructions can be derived from various 2D and 3D data sources, enabling detailed anatomical analyses. In this study, we evaluate the efficacy of surface scans in accurately reconstructing the volumes of the rotator cuff and teres major muscles across a diverse sample of hominoids.

View Article and Find Full Text PDF

Ocular surface chemical injuries often result in permanent visual impairment and necessitate complex, long-term treatments. Immediate and extensive irrigation serves as the first-line intervention, followed by various therapeutic protocols applied throughout different stages of the condition. To optimize outcomes, conventional regimens increasingly incorporate biological agents and surgical techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!