A nanocatalyst constructed from reduced graphene oxide and iridium atoms (RGOIrNc) showed high selectivity (99%-100%) and reliability for the transformation of aromatic alcohols into carbonyl compounds via ultrasonication without using harmful chemicals and solvents. Experimental data including Fourier transform infrared spectroscopy, x-ray diffraction, spherical-aberration-corrected field emission transmission electron microscopy and Raman spectra confirmed the nanostructure of the RGOIrNc. Noticeably, the structural characteristics of this catalyst remained unchanged within 25 catalytic cycles and the activity and selectivity for the transformation of benzylic alcohols showed good stability. The average turnover frequency is greater than 9000 h, the total turnover number is more than 150 000 after 25 catalytic cycles and the productivity of carbonyl compounds reaches 376 048 [Formula: see text], indicating that RGOIrNc catalyst has good durability and stability and high 'greenness'.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab814d | DOI Listing |
Toxics
November 2024
Department of Chemical and Environmental Engineering, Seokyeong University, Seoul 02713, Republic of Korea.
Since automobiles are the primary means of transportation in modern society, the assessment of health effects from acute and chronic exposure to pollutants in automobiles is crucial. In this study, the concentration of volatile organic compounds (VOCs), carbonyl compounds, and odor-including substances in newly manufactured automobiles were analyzed, and exposure factors reflecting automobile user characteristics were selected for health risk assessment. Toluene exhibited the highest concentration (203.
View Article and Find Full Text PDFMolecules
December 2024
School of Chemistry and Physics, University of KwaZulu-Natal, Scottsville, Pietermaritzburg 3209, South Africa.
Benzylic C-H oxidation to form carbonyl compounds, such as ketones, is a fundamental transformation in organic synthesis as it allows for the preparation of versatile intermediates. In this review, we highlight the synthesis of aromatic ketones via catalytic, electrochemical, and photochemical oxidation of alkylarenes using different catalysts and oxidants in the past 5 years. Additionally, we also discuss the synthesis of heterocyclic molecules using benzylic C-H oxidation as a key step.
View Article and Find Full Text PDFMolecules
December 2024
Department of Chemistry & Biochemistry, California State University, Fresno, CA 93740, USA.
Prostate cancer remains a significant global health concern, prompting ongoing exploration of novel therapeutic agents. Licochalcone A, a natural product in the chalcone family isolated from licorice root, is characterized by its enone structure and demonstrates antiproliferative activity in the micromolar range across various cell lines, including prostate cancer. Building on our prior success in enhancing curcumin's antiproliferative potency by replacing the substituted phenol with a 1-alkyl-1H-imizadol-2-yl moiety, we applied a similar approach to design a new class of licochalcone A-inspired chalcones.
View Article and Find Full Text PDFMolecules
December 2024
Institute of Agricultural Biology and Biotechnology, National Research Council, Via Moruzzi 1, 56124 Pisa, Italy.
Beer and its components show potential for reducing hepatic steatosis in rodent models through multiple mechanisms. This study aimed to evaluate beer's anti-steatotic effects in a high-fat diet (HFD)-induced mouse model of Metabolic dysfunction-Associated Liver Disease (MASLD) and to explore the underlying mechanisms. In the HFD group, steatosis was confirmed by altered blood parameters, weight gain, elevated liver lipid content, and histological changes.
View Article and Find Full Text PDFMolecules
December 2024
Department of Organic Chemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029, China.
In this study, an iridium-catalyzed selective 1,4-reduction of α,β-unsaturated carbonyl compounds is realized, with water as a solvent and formic acid as a hydride donor. The new efficient iridium catalyst features a 2-(4,5-dihydroimidazol-2-yl)quinoline ligand. The chemoselectivity and catalyst efficiency are highly dependent on the electronic and steric properties of the substrates.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!