The Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae), holds an impressive record of successful invasions promoted by the growth and development of international fruit trade. Hence, survival of immatures within infested fruit that are subjected to various conditions during transportation seems to be a crucial feature that promotes invasion success. Wolbachia pipientis is a common endosymbiont of insects and other arthropods generating several biological effects on its hosts. Existing information report the influence of Wolbachia on the fitness traits of insect host species, including the Mediterranean fruit fly. However, little is known regarding effects of Wolbachia infection on immature development in different host fruits and temperatures. This study was conducted to determine the development and survival of immature stages of four different Mediterranean fruit fly populations, either infected or uninfected with Wolbachia, in two hosts (apples, bitter oranges) under three constant temperatures (15, 25 and 30°C), constant relative humidity (45-55 ± 5%), and a photoperiod of 14L:10D. Our findings demonstrate both differential response of two fruit fly lines to Wolbachia infection and differential effects of the two Wolbachia strains on the same Mediterranean fruit fly line. Larva-to-pupa and larva-to-adult survival followed similar patterns and varied a lot among the four medfly populations, the two host fruits and the different temperatures. Pupation rates and larval developmental time were higher for larvae implanted in apples compared to bitter oranges. The survival rates of wildish medflies were higher than those of the laboratory adapted ones, particularly in bitter oranges. The Wolbachia infected medflies, expressed lower survival rates and higher developmental times, especially the wCer4 infected line. High temperatures constrained immature development and were lethal for the Wolbachia infected wCer4 medfly line. Lower temperatures inferred longer developmental times to immature stages of all medfly populations tested, in both host fruits. Implications on the ecology and survival of the fly in nature are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082022 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0229727 | PLOS |
Int J Biol Macromol
January 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Institute of Applied Ecology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Joint International Research Laboratory of Ecological Pest Control, Ministry of Education, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Laboratory of Integrated Pest Management for Fujian-Taiwan Crops, Ministry of Agriculture, Fuzhou 350002, China; Key Laboratory of Green Pest Control, Fujian Province University, Fuzhou 350002, China. Electronic address:
The β-tubulin gene is essential for reproductive development, especially for male fertility, in different insects including Bombyx mori and Drosophila melanogaster. Targeting reproductive genes such as β-tubulin offers a promising approach to pest control that is more sustainable than chemical pesticides. However, there is limited research on the functional role of β-tubulin in Plutella xylostella, a highly damaging pest of vegetable crops.
View Article and Find Full Text PDFGenome
January 2025
Dalhousie University, Biology, Halifax, Nova Scotia, Canada;
The actin cytoskeleton is a dynamic mesh of filaments that provide structural support for cells and respond to external deformation forces. Active sensing of these forces is crucial for the function of the actin cytoskeleton, and some actin crosslinkers accomplish it. One such crosslinker is filamin, a highly conserved actin crosslinker dimeric protein with an elastic region capable of responding to mechanical changes in the actin cytoskeleton.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA.
The mosquito midgut functions as a key interface between pathogen and vector. However, studies of midgut physiology and virus infection dynamics are scarce, and in Culex tarsalis-an extremely efficient vector of West Nile virus (WNV)-nonexistent. We performed single-cell RNA sequencing on Cx.
View Article and Find Full Text PDFPLoS Biol
January 2025
Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Canada.
The role of epigenetics and chromatin in the maintenance of postmitotic neuronal cell identities is not well understood. Here, we show that the histone methyltransferase Trithorax (Trx) is required in postmitotic memory neurons of the Drosophila mushroom body (MB) to enable their capacity for long-term memory (LTM), but not short-term memory (STM). Using MB-specific RNA-, ChIP-, and ATAC-sequencing, we find that Trx maintains homeostatic expression of several non-canonical MB-enriched transcripts, including the orphan nuclear receptor Hr51, and the metabolic enzyme lactate dehydrogenase (Ldh).
View Article and Find Full Text PDFJ Chem Ecol
January 2025
Department of Nematology, University of California Riverside, Riverside, CA, USA.
Plants produce defensive toxins to deter herbivores. In response, some specialized herbivores evolved resistance and even the capacity to sequester toxins, affecting interactions at higher trophic levels. Here, we test the hypothesis that potential natural enemies of specialized herbivores are differentially affected by plant toxins depending on their level of adaptation to the plant-herbivore system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!