Dengue is the most important mosquito-borne viral infection in Sri Lanka causing an enormous social and economic burden in the country. In the absence of therapeutic drugs and the developed vaccines are under investigation, vector control is the best strategy to reduce the disease transmission. Therefore, the development of novel tools to control dengue vector mosquitoes has become the need of the hour. Novaluron is a recently developed Insect Growth Regulator (IGR) which inhibits chitin synthesis in immature stages of insects. The aim of the study was to identify the efficacy of a simple and cost-effective Autocidal Gravid Ovitrap (AGO) developed using Novaluron to control dengue outbreaks in the District of Gampaha, Sri Lanka. Laboratory and semifield experiments were performed to identify the activity range, optimum field dosage, and residual effects of Novaluron following the World Health Organization guidelines, and field experiments were performed in the Ragama Medical Officer of Health (MOH) area. Two study areas 800 m apart were selected and assigned as treated and control areas randomly. In each study area, 30 households were selected randomly. Each household was given two ovitraps, one placed indoors and the other placed outdoors. Mortality and survival counts were recorded separately for one-year time period and data were analyzed using a two-way repeated measures analysis of variance model. During the laboratory experiments, the adult emerging inhibition was 100% in all tested concentrations. The optimum field dosage was 2 ppm and the residual effect was 28 days. In the field experiments, significantly higher mortality counts were recorded in treated areas both indoor- and outdoor-placed AGOs. Two-factor repeated measures ANOVA followed by Tukey's test confirmed that the mean mortality count is high for the developed AGOs both indoor and outdoor settings. The developed AGO can be deployed to control both indoor and outdoor dengue vector mosquito populations, and in dengue-risk areas, the ovitrap will be supportive to local health authorities to enhance the efficiency of future vector control programs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071800PMC
http://dx.doi.org/10.1155/2020/9567019DOI Listing

Publication Analysis

Top Keywords

control dengue
12
dengue vector
12
sri lanka
12
autocidal gravid
8
vector mosquitoes
8
district gampaha
8
gampaha sri
8
vector control
8
experiments performed
8
optimum field
8

Similar Publications

Dengue, caused by the dengue virus (DENV), poses a significant global health challenge. Effective vaccines and treatments for dengue are lacking due to gaps in understanding its pathogenesis and mechanisms in severe cases. This study investigates the role of immunoglobulin E (IgE) in dengue, focusing on its potential association with virus neutralization and antibody-dependent enhancement (ADE) in DENV replication.

View Article and Find Full Text PDF

Background: Dengue fever (DF) poses a growing global threat, necessitating a comprehensive one-health approach to address its complex interplay between human, animal, and environmental factors. In Oyo State, Nigeria, the true burden of DF remains unknown due to underdiagnosis and misdiagnosis as malaria, exacerbated by poor health-seeking behavior, weak surveillance systems, and inadequate health infrastructure. Adopting a one-health approach is crucial to understanding the dynamics of DF transmission.

View Article and Find Full Text PDF

The yellow fever mosquito () is an organism of high medical importance because it is the primary vector for diseases such as yellow fever, Zika, dengue, and chikungunya. Its medical importance has made it a subject of numerous efforts to understand their biology. One such effort, was the development of a high-quality reference genome (AaegL5).

View Article and Find Full Text PDF

Microbial biopesticides: A one health perspective on benefits and risks.

One Health

June 2025

Department of Molecular Microbiology and Immunology, Johns Hopkins Malaria Research Institute, Johns Hopkins University, Bloomberg School of Public Health, 615 N Wolfe St, Baltimore, MD 21205, USA.

Controlling insect pests that destroy crop and spread diseases will become increasingly crucial for addressing the food demands of a growing global population and the expansion of vector-borne diseases. A key challenge is the development of a balanced approach for sustainable food production and disease control in 2050 and beyond. Microbial biopesticides, derived from bacteria, viruses, fungi, protozoa, or nematodes, offer potentially significant benefits for promoting One Health and contributing to several United Nations Sustainable Development Goals (SDGs).

View Article and Find Full Text PDF

Background: Mosquito-borne diseases have a significant public health threat worldwide, with arboviruses accounting for a high proportion of infectious diseases and mortality annually. Brazil, in particular, has been suffering outbreaks of diseases transmitted by mosquito viruses, notably those of the genus, such as dengue, Zika, and chikungunya. Against this background, the São Paulo Zoo is an intriguing ecological niche to explore the virome of mosquitoes, potentially shedding light on the dynamics of arbovirus transmission within a confined setting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!