Donor cell-derived leukemia and myelodysplastic syndrome (DCL) is a rare complication in patients after allogenic stem cell transplantation (SCT). Since 1971, numerous cases of DCL have been reported, but the detailed mechanisms of DCL are still unclear. A patient with jumping translocations (JTs) of 1q in umbilical cord blood donor cell-derived myelodysplastic syndrome (MDS), which likely occurred due to genetic alterations of and after cord blood transplantation (CBT), was examined in this study. Previously reported DCL cases after CBT that focused on the cytogenetic and molecular characteristics of these patients and patient outcome were reviewed. A total of 30 cases of DCL after CBT were identified between 2005 and 2018. The median time from CBT to the development of DCL was 16 months. The number of patients with DCL who were diagnosed with acute myeloid leukemia (AML) and MDS was 19 and 8, respectively. JTs were frequently observed in 5 of 27 DCL patients who had cytogenetic abnormalities, including our patient. Molecular abnormalities were described in 7 of the cases, and the most frequent abnormality was an mutation. Other gene mutations that were usually found in MDS or AML were observed in JT-DCL after CBT. From these results, chromosomal abnormalities such as JTs that occur subsequent to genetic alterations were seemed an important mechanisms underlying DCL onset in patients after CBT. Further molecular analyses regarding the genetic alterations of JTs are required to understand the pathogenesis of umbilical cord blood-derived JT-DCL.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7058023PMC
http://dx.doi.org/10.3892/mco.2020.1995DOI Listing

Publication Analysis

Top Keywords

donor cell-derived
12
myelodysplastic syndrome
12
cord blood
12
genetic alterations
12
dcl
9
jumping translocations
8
cell-derived myelodysplastic
8
blood transplantation
8
cases dcl
8
umbilical cord
8

Similar Publications

Tagless LysoIP for immunoaffinity enrichment of native lysosomes from clinical samples.

J Clin Invest

December 2024

Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dundee, United Kingdom.

Lysosomes are implicated in a wide spectrum of human diseases including monogenic lysosomal storage disorders (LSDs), age-associated neurodegeneration and cancer. Profiling lysosomal content using tag-based lysosomal immunoprecipitation (LysoTagIP) in cell and animal models has substantially moved the field forward, but studying lysosomal dysfunction in human patients remains challenging. Here, we report the development of the 'tagless LysoIP' method, designed to enable the rapid enrichment of lysosomes, via immunoprecipitation, using the endogenous integral lysosomal membrane protein TMEM192, directly from clinical samples and human cell lines (e.

View Article and Find Full Text PDF

Transplantation of induced pluripotent stem cell-derived neural cells represents a promising strategy for treating neurodegenerative diseases. However, reprogramming of somatic cells and their subsequent neural differentiation is complex and time-consuming, thereby impeding autologous applications. Recently, direct transcription factor-based conversion of blood cells into induced neural stem cells (iNSCs) has emerged as a potential alternative.

View Article and Find Full Text PDF

Pancreatic islet transplantation is a promising cell replacement therapy for patients with type 1 diabetes (T1D), an autoimmune disease that destroys insulin-producing islet β cells. However, the shortage of donor pancreatic islets significantly limits the widespread use of this strategy as a routine therapy. Pluripotent stem cell-derived insulin-producing islet organoids present a promising alternative β cell source for T1D patients.

View Article and Find Full Text PDF

Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) have been reported to hold great potential as cell-free therapies due to their low immunogenicity and minimal toxicity. However, the large doses of MSC-EVs that are required for their clinical application highlight the urgency of finding a large-scale system for MSC-EV manufacture. In this study, we aimed to set up a hollow fiber bioreactor system for the continuous homogenous production of functional and high-quality MSC-EVs.

View Article and Find Full Text PDF

Tacrolimus regulates extracellular vesicle secretion from T cells via autophagy-lysosomal pathway.

Biomed Pharmacother

December 2024

Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan; Department of Surgery, E-Da Hospital, Kaohsiung, Taiwan. Electronic address:

Extracellular vesicles (EVs) derived from T cells have been proposed to mediate intercellular communication and orchestrate immune responses. The immunosuppressive drug, tacrolimus (TAC), suppresses T cell activity; however, the impact of TAC on T cell-derived EVs remains primarily unexplored. In this study, human primary T cells purified from healthy donors were used to investigate TAC-mediated regulation of EV secretion by T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!