Pressurized intrathoracic aerosol chemotherapy (PITAC) has been introduced to the clinical setting as a novel treatment option for pleural metastasis (PM). For decades the therapeutic application of aerosols was limited to intrabronchial delivery. However, present studies suggest performing PITAC on patients with PM and malignant pleural effusion. Using an established swine model, the present study aimed to introduce a facilitated intrathoracic chemoaerosol application via spray-catheter. Using an ex-vivo model of 3 postmortem swine, the feasibility of intrathoracic aerosol chemotherapy (ITC) with doxorubicin using a spray-catheter was evaluated in a normal pressure environment. Following thoracotomy, the spray-catheter was inserted via trocar. Tissue samples were retrieved and further analyzed by fluorescence microscopy to detect doxorubicin contact. Our data demonstrated that the application of ITC was technically feasible and did not exhibit any significant obstacles. By making a minimally invasive thoracotomy incision it was possible to create an adequate pneumothorax without the need of a double-lumen tube or intubation. ITC did not require the creation of a pressurized environment. Tissue samples revealed doxorubicin contact within the pleura. In conclusion, ITC is a fast and feasible procedure that could possibly be administered via bedside application, therefore eliminating the need of an operating room and surgical staff. However, further studies are required to evaluate the safety of patients and physicians regarding this novel applicational modality. Nevertheless, the present study demonstrated that ITC may potentially be applied at bedside, an option that is particularly important for patients who do not qualify for PITAC procedures.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7057944 | PMC |
http://dx.doi.org/10.3892/mco.2020.1999 | DOI Listing |
Pleura Peritoneum
December 2024
Odense PIPAC Center (OPC) and Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.
Objectives: Pressurized IntraThoracic Aerosol Chemotherapy (PITAC) is a minimally invasive cancer-directed therapy for patients with malignant pleural effusion (MPE) and/or pleural metastasis (PLM). PITAC is based on Pressurized IntraPeritoneal Aerosol Chemotherapy, which has proven to be safe and feasible. Since 2012, 47 PITACs have been published, and prospective data on feasibility, safety and potential local response are lacking.
View Article and Find Full Text PDFPleura Peritoneum
December 2024
Odense PIPAC Center (OPC) and Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.
Objectives: Pressurized IntraThoracic Aerosol Chemotherapy (PITAC) has been suggested as a new therapy for patients with malignant pleural effusion (MPE) and/or pleural metastasis (PLM). The patients have a poor prognosis with a median survival of 3 to 12 months. We present feasibility, patient safety, and cytological/histological response assessment in PITAC-treated patients with MPE and/or PLM.
View Article and Find Full Text PDFCancer Treat Res Commun
December 2024
Division of Thoracic Surgery, University Hospital of Lausanne, Rue du Bugnon 46 1011, Lausanne, Switzerland. Electronic address:
Background: Pleural carcinosis originates from various cancers. Its management consists in systemic therapies combined to dyspnea relief procedures. Prior studies have tested hyperthermic intrathoracic chemotherapy to treat pleural carcinosis with interesting patient survival results.
View Article and Find Full Text PDFCancer Immunol Res
November 2024
University Hospital of Lausanne, Lausanne, VD, Switzerland.
Pleural mesothelioma (PM) is a fatal disease with limited treatment options. Recently, PM management has improved with the development of immune checkpoint inhibitors (ICIs). In first-line therapy, dual PD-1 and CTLA-4 blockade enhances tumor control and patient survival compared with chemotherapy.
View Article and Find Full Text PDFThe reliability and accuracy of numerical models and computer simulations to study aerosol deposition in the human respiratory system is investigated for a patient-specific tracheobronchial tree geometry. A computational fluid dynamics (CFD) model coupled with discrete elements methods (DEM) is used to predict the transport and deposition of the aerosol. The results are compared to experimental and numerical data available in the literature to study and quantify the impact of the modeling parameters and numerical assumptions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!