Mechanical properties of metal-organic frameworks.

Chem Sci

International Institute of Nanotechnology , Department of Chemistry , Northwestern University, 2145 Sheridan Road , Evanston , Illinois 60208 , USA . Email:

Published: December 2019

As the field of metal-organic frameworks (MOFs) continues to grow, the physical stability and mechanical properties of these porous materials has become a topic of great interest. While strategies for synthesizing MOFs with desirable chemical functionalities or pore sizes have been established over the past twenty years, design principles to modulate the response of MOFs to mechanical stress are still underdeveloped. The inherent porosity of these frameworks results in many interesting and sometimes unexpected phenomena upon exposure to elevated pressures and other physical stimuli. Beyond its fundamental importance, an understanding of mechanical properties ( bulk modulus, shear modulus, Young's modulus, linear compressibility, and Poisson's ratio) plays an essential role in the post-synthetic processing of MOFs, which has implications in the successful transition of these materials from academic interest to industrial relevance. This perspective provides a concise overview of the efforts to understand the mechanical properties of MOFs through experimental and computational methods. Additionally, current limitations and possible future directions for the field are also discussed briefly.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7066669PMC
http://dx.doi.org/10.1039/c9sc04249kDOI Listing

Publication Analysis

Top Keywords

mechanical properties
16
metal-organic frameworks
8
mechanical
5
mofs
5
properties metal-organic
4
frameworks field
4
field metal-organic
4
frameworks mofs
4
mofs continues
4
continues grow
4

Similar Publications

Menthol is a naturally occurring cyclic terpene alcohol and is the major component of peppermint and corn mint essential oils extracted from Mentha piperita L. and Mentha arvensis L..

View Article and Find Full Text PDF

Babesiosis in sickle cell disease (SCD) is marked by severe anemia but the underlying red blood cell (RBC) rheological parameters remain largely undefined. Here, we describe altered RBC deformability from both primary (host RBC sickle hemoglobin mediated) and secondary changes (Babesia parasite infection mediated) to the RBC membrane using wild type AA, sickle trait AS and sickle SS RBCs. Our ektacytometry (LORRCA) analysis demonstrates that the changes in the host RBC bio-mechanical properties, pre- and post- Babesia infection, reside on a spectrum of severity, with wild type infected AA cells, despite showing a significant reduction of deformability under both shear and osmolarity gradients, exhibiting only a mild phenotype; compared to infected AS RBCs which show median changes in deformability and infected SS RBCs which exhibit the most dramatic impact of infection on cellular rheology, including an increase in Point of Sickling values.

View Article and Find Full Text PDF

Blood clots are complex structures composed of blood cells and proteins held together by the structural framework provided by an insoluble fibrin network. Factor (F)XIII is a protransglutaminase essential for stabilizing the fibrin network. Activated FXIII(a) introduces novel covalent crosslinks within and between fibrin and other plasma and cellular proteins, and thereby promotes fibrin biochemical and mechanical integrity.

View Article and Find Full Text PDF

In nature, organisms adapt to environmental changes through training to learn new abilities, offering valuable insights for developing intelligent materials. However, replicating this adaptive learning in synthetic materials presents a significant challenge. This study introduces a feasible approach to train liquid crystal elastomers (LCEs) by integrating a mechanophore tetraarylsuccinonitrile (TASN) into their main chain, addressing the challenge of enabling synthetic materials to exchange substances with their environment.

View Article and Find Full Text PDF

The global dental implant market is projected to reach $9.5 billion by 2032, growing at a 6.5% compound annual growth rate due to the rising prevalence of dental diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!