A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MicroRNA-103 Protects Coronary Artery Endothelial Cells against HO-Induced Oxidative Stress via BNIP3-Mediated End-Stage Autophagy and Antipyroptosis Pathways. | LitMetric

Endothelial cell damage caused by oxidative stress is widely considered to be a triggering event in atherosclerosis (AS). However, the specific effect elicited by autophagy in endothelial cells undergoing oxidative stress remains controversial, especially during end-stage autophagy. The inhibition of end-stage autophagy has been reported to increase cell pyroptosis and contribute to endothelial damage. Several studies have shown that microRNA-103 is involved in end-stage autophagy; however, its specific mechanism of action is not yet characterized. In this study, we addressed the regulatory role of miR-103 in autophagy during oxidative stress of endothelial cells. Hydrogen peroxide (HO) treatment was used as an model of oxidative stress. MTS and ROS levels were measured to evaluate cell activity. qRT-PCR was used to detect the expression of miR-103. Autophagy was examined using western blot, immunofluorescence staining, and electron microscopy, while western blot analysis detected pyroptosis-related proteins. Results show that miR-103 expression decreased under oxidative stress. Further, miR-103 repressed transcription of Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3). The oxidative stress caused by HO caused cell damage from 2 hours ( < 0.05) and increased the level of intracellular reactive oxygen species ( < 0.05); at the same time, the damage could be further aggravated by the stimulation of bafA1 ( < 0.05). Under the stimulation of HO, the expression of miR-103 decreased ( < 0.05). However, high expression of miR-103 could reduce the accumulation of LC3II and P62 ( < 0.05) by inhibiting the downstream target gene Bcl-2/adenovirus E1B 19 kDa interacting protein (BNIP3), thus reducing the occurrence of cell pyroptosis ( < 0.05). This process could be blocked by end-stage autophagy inhibitor bafA1 ( < 0.05), which further indicated that miR-103 affected cell injury by autophagy. On the contrary, the low expression of miR-103 promoted the accumulation of autophagy protein and increased the occurrence of pyroptosis ( < 0.05). In conclusion, inhibition of miR-103 restrained end-stage of autophagy by regulating BNIP3, thus changing the occurrence of cell pyroptosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071805PMC
http://dx.doi.org/10.1155/2020/8351342DOI Listing

Publication Analysis

Top Keywords

oxidative stress
28
end-stage autophagy
24
expression mir-103
16
endothelial cells
12
cell pyroptosis
12
autophagy
11
mir-103
9
cell damage
8
mir-103 autophagy
8
western blot
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!