Inflammation and oxidative stress play key roles in the process of aging and age-related diseases. Since serine availability plays important roles in the support of antioxidant and anti-inflammatory defense system, we explored whether serine deficiency affects inflammatory and oxidative status in D-galactose-induced aging mice. Male mice were randomly assigned into four groups: mice fed a basal diet, mice fed a serine- and glycine-deficient (SGD) diet, mice injected with D-galactose and fed a basal diet, and mice injected with D-galactose and fed an SGD diet. The results showed that D-galactose resulted in oxidative and inflammatory responses, while serine deficiency alone showed no such effects. However, serine deficiency significantly exacerbated oxidative stress and inflammation in D-galactose-treated mice. The composition of fecal microbiota was affected by D-galactose injection, which was characterized by decreased microbiota diversity and downregulated ratio of /, as well as decreased proportion of . Furthermore, serine deficiency exacerbated these changes. Additionally, serine deficiency in combination with D-galactose injection significantly decreased fecal butyric acid content and gene expression of short-chain fatty acid transporters ( and ) and receptor () in the brain. Finally, serine deficiency exacerbated the decrease of expression of phosphorylated AMPK and the increase of expression of phosphorylated NFB p65, which were caused by D-galactose injection. In conclusion, our results suggested that serine deficiency exacerbated inflammation and oxidative stress in D-galactose-induced aging mice. The involved mechanisms might be partially attributed to the changes in the microbiota-gut-brain axis affected by serine deficiency.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7071807 | PMC |
http://dx.doi.org/10.1155/2020/5821428 | DOI Listing |
Alzheimers Dement
December 2024
Institute of Brain Sciene, National Yang Ming Chiao Tung University, Taipei, Taiwan.
Background: Amyloid-beta (Aβ) deposition is a key pathological characteristic of Alzheimer's disease (AD). Microglia serves as a crucial system responsible for clearing Aβ. Activated microglia migrate towards Aβ deposits, engulf them, and breakdown Aβ through cathepsins within the lysosome.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, 211166, China.
Mitochondrial dysfunction is a key factor in exacerbating pressure overload-induced cardiac hypertrophy and is linked to increased morbidity and mortality. ECSIT, a crucial adaptor for inflammation and mitochondrial function, has been reported to express multiple transcripts in various species and tissues, leading to distinct protein isoforms with diverse subcellular localizations and functions. However, whether an unknown ECSIT isoform exists in cardiac cells and its potential role in regulating mitochondrial function and pathological cardiac hypertrophy has remained unclear.
View Article and Find Full Text PDFInt J Med Sci
January 2025
Health Management Institute, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China.
Receptor-interacting protein 3 (Ripk3) plays a crucial part in acute lung injury (ALI) by regulating inflammation-induced endothelial damage in the lung tissue. The precise mechanisms through which Ripk3 contributes to the endothelial injury in ALI still remain uncertain. In the current research, we employed Ripk3-deficient (Ripk3) mice to examine the role of Ripk3 in ALI progression, focusing on its effects on endothelial cells (ECs), mitochondrial damage and necroptosis.
View Article and Find Full Text PDFSci Transl Med
January 2025
Rady Children's Institute for Genomic Medicine, San Diego, CA 92123, USA.
Mutations in lipid regulator genes are a frequent cause of autism spectrum disorder, including those regulating phosphatidylinositol (PI) and phosphoinositide 3-kinase signaling. encodes a key acyltransferase in PI synthesis and is mutated in an autism-related condition with neurodevelopmental delay and epilepsy. Using liquid chromatography-tandem mass spectrometry, we analyzed the PI-associated glycerolipidome in mice and humans during neurodevelopment and found dynamic regulation at times corresponding to neural apoptosis in the brains of knockout mice.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate (Milan), 20054, Italy.
The CDKL5 deficiency disorder (CDD) is a severe neurodevelopmental disorder characterized by early-onset epilepsy, intellectual disability, motor and visual dysfunctions. The causative gene is CDKL5, which codes for a kinase required for brain development. There is no cure for CDD patients; treatments are symptomatic and focus mainly on seizure control.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!