Animals switch between inactive and active states, simultaneously impacting their energy intake, energy expenditure and predation risk, and collectively defining how they engage with environmental variation and trophic interactions. We assess daily activity responses to long-term variation in temperature, resources and mating opportunities to examine whether individuals choose to be active or inactive according to an optimisation of the relative energetic and reproductive gains each state offers. We show that this simplified behavioural decision approach predicts most activity variation (R = 0.83) expressed by free-ranging red squirrels over 4 years, as quantified through accelerometer recordings (489 deployments; 5066 squirrel-days). Recognising activity as a determinant of energetic status, the predictability of activity variation aggregated at a daily scale, and the clear signal that behaviour is environmentally forced through optimisation of gain, provides an integrated approach to examine behavioural variation as an intermediary between environmental variation and energetic, life-history and ecological outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/ele.13494 | DOI Listing |
Ann Bot
January 2025
Theoretical and Experimental Ecology Station, CNRS, Moulis, France.
Background And Aims: It is assumed that trees should adapt their above and belowground organs as they age. However, most studies to date have quantified these trait adjustments in homogeneous forest stands, confounding the effect of stand aging on soil properties and the intrinsic response of trees to aging.
Methods: Here, we examined 11 morphological, architectural, anatomical and mycorrhizal fine root traits of each of the first five orders for 66 Pinus koraiensis individuals of 16 to 285 years old in northeast China, while accounting for soil characteristics (pH and total C, N and P concentrations).
Integr Environ Assess Manag
January 2025
Department of Environmental Health Engineering, Faculty of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
This study aimed to evaluate the concentrations of sulfur dioxide (SO2) and nitrogen oxides (NOX) around the Qom (a province in Iran) combined cycle power plant in relation to seasonal variations and fuel type from December 2014 to May 2015. Passive sampling was used in three monitoring sites around the power plant to assess noncarcinogenic health risks associated with exposure to SO2 and NOX. Results showed the higher concentrations of NOX and SO2 in winter than in spring.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
Environmental Systems Analysis, Chalmers University of Technology, Gothenburg, Sweden.
This research aims to address the data gaps in freshwater ecotoxicological characterization factors (CFs) for per- and polyfluoroalkyl substances (PFASs). These CFs are essential for incorporating the ecotoxicity impacts of PFAS emissions into life cycle assessments (LCAs). This study has three primary objectives: first, to calculate a comprehensive set of experimental aquatic ecotoxicity CFs for PFASs utilizing the USEtox model (version 2.
View Article and Find Full Text PDFIntegr Environ Assess Manag
January 2025
International Institute for Sustainable Development-Experimental Lakes Area, Winnipeg, Manitoba, Canada.
Selenium (Se) is a naturally occurring metalloid in soils and rocks that is released by weathering processes; it is also enriched by some anthropogenic activities, including mining and agriculture. The mechanism of Se aquatic toxicity has been understood for several decades; at elevated concentrations, dietary Se can accumulate in maternal tissues of fish and birds, become deposited into their eggs, and can potentially result in impaired embryological development. North American environmental regulations have acknowledged differences in species sensitivity and variation among aquatic environments (i.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan.
Solvent environment may significantly affect the equilibria involving flexible solute species, such as proteins and polymers. In the present work, a computation scheme is formulated for the change in the excess chemical potential of a flexible solute molecule upon variation of the solvent condition. The formulation adopts the scheme of error minimization in parallel to the method of Bennett acceptance ratio, and an exact expression is presented that provides the change in the excess chemical potential from solvation free energies computed in two solvent conditions of interest.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!