Protected areas (PAs) are a foundational and essential strategy for reducing biodiversity loss. However, many PAs around the world exist on paper only; thus, while logging and habitat conversion may be banned in these areas, illegal activities often continue to cause alarming habitat destruction. In such cases, the presence of armed conflict may ultimately prevent incursions to a greater extent than the absence of conflict. Although there are several reports of habitat destruction following cessation of conflict, there has never been a systematic and quantitative "before-and-after-conflict" analysis of a large sample of PAs and surrounding areas. Here we report the results of such a study in Colombia, using an open-access global forest change dataset. By analysing 39 PAs over three years before and after Colombia's peace agreement with the Revolutionary Armed Forces of Colombia (FARC), we found a dramatic and highly significant increase in the deforestation rate for the majority of these areas and their buffer zones. We discuss the reasons behind such findings from the Colombian case, and debate some general conservation lessons applicable to other countries undergoing post-conflict transitions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080754 | PMC |
http://dx.doi.org/10.1038/s41598-020-61861-y | DOI Listing |
Nanotechnology
January 2025
Walker Department of Mechanical Engineering, The University of Texas at Austin, 204 E. Dean Keeton St., Austin, Texas, 78712-1139, UNITED STATES.
Sapphire is an attractive material in photonic, optoelectronic, and transparent ceramic applications that stand to benefit from surface functionalization effects stemming from micro/nanostructures. Here we investigate the use of ultrafast lasers for fabricating nanostructures in sapphire by exploring the relationship between irradiation parameters, morphology change, and selective etching. In this approach an ultrafast laser pulse is focused on the sapphire substrate to change the crystalline morphology to amorphous or polycrystalline, which is characterized by examining different vibrational modes using Raman spectroscopy.
View Article and Find Full Text PDFJ Biomed Opt
January 2025
TU Dresden, Carl Gustav Carus Faculty of Medicine, Anesthesiology and Intensive Care Medicine, Clinical Sensing and Monitoring, Dresden, Germany.
Significance: The precise identification and preservation of functional brain areas during neurosurgery are crucial for optimizing surgical outcomes and minimizing postoperative deficits. Intraoperative imaging plays a vital role in this context, offering insights that guide surgeons in protecting critical cortical regions.
Aim: We aim to evaluate and compare the efficacy of intraoperative thermal imaging (ITI) and intraoperative optical imaging (IOI) in detecting the primary somatosensory cortex, providing a detailed assessment of their potential integration into surgical practice.
RSC Adv
January 2025
Nano-Science Center & Department of Chemistry, University of Copenhagen Universitetsparken 5 2100 København Ø Denmark
pH remains the most important chemical parameter and must be monitored for positive outcomes in areas as different as cheese making and fertilisation (IVF). Where blood gas analysers enable patient monitoring, starter cultures in cheese manufacturing are still monitored using conventional pH electrodes. Here, we present a homogeneous multiwell plate sensor for monitoring pH, with the same sensitivity as a pH electrode.
View Article and Find Full Text PDFThe Problem: People use social media platforms to chat, search, and share information, express their opinions, and connect with others. But these platforms also facilitate the posting of divisive, harmful, and hateful messages, targeting groups and individuals, based on their race, religion, gender, sexual orientation, or political views. Hate content is not only a problem on the Internet, but also on traditional media, especially in places where the Internet is not widely available or in rural areas.
View Article and Find Full Text PDFEcol Appl
January 2025
Division of Natural Resources, Park Operations Department, Cleveland Metroparks, Cleveland, Ohio, USA.
Human-caused conversion of natural habitat areas to developed land cover represents a major driver of habitat loss and fragmentation, leading to reorganization of biological communities. Although protected areas and urban greenspaces can preserve natural systems in fragmented landscapes, their efficacy has been stymied by the complexity and scale-dependency underlying biological communities. While migratory bird communities are easy to-study and particularly responsive to anthropogenic habitat alterations, prior studies have documented substantial variation in habitat sensitivity across species and migratory groups.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!