Long intergenic non-coding RNAs (lincRNAs) have been proved to be involved in regulating female reproduction. However, to what extent lincRNAs are involved in ovarian functions and fertility is incompletely understood. Here we show that a lincRNA, NORFA is involved in granulosa cell apoptosis, follicular atresia and sow fertility. We found that NORFA was down-regulated during follicular atresia, and inhibited granulosa cell apoptosis. NORFA directly interacted with miR-126 and thereby preventing it from binding to TGFBR2 3'-UTR. miR-126 enhanced granulosa cell apoptosis by attenuating NORFA-induced TGF-β signaling pathway. Importantly, a breed-specific 19-bp duplication was detected in NORFA promoter, which proved association with sow fertility through enhancing transcription activity of NORFA by recruiting transcription factor NFIX. In summary, our findings identified a candidate lincRNA for sow prolificacy, and provided insights into the mechanism of follicular atresia and female fertility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080823 | PMC |
http://dx.doi.org/10.1038/s42003-020-0864-x | DOI Listing |
J Assist Reprod Genet
January 2025
Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Clinical Sciences, Research Group Genetics, Reproduction and Development, Centre for Medical Genetics, Laarbeeklaan 101, 1090, Brussels, Belgium.
Purpose: Primary ovarian insufficiency (POI) is an important cause of female infertility, stemming from follicle dysfunction or premature oocyte depletion. Pathogenic variants in genes such as NOBOX, GDF9, BMP15, and FSHR have been linked to POI. NOBOX, a transcription factor expressed in oocytes and granulosa cells, plays a pivotal role in folliculogenesis.
View Article and Find Full Text PDFMol Cell Endocrinol
January 2025
Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA; Reproductive Medicine Associates of New York, Department of Obstetrics, Gynecology and Reproductive Science, Division of Reproductive Endocrinology and Infertility, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
The purpose of this study was to examine the deposition of advanced glycation end products (AGEs) and their receptors, RAGE, in ovarian follicles during folliculogenesis in mice fed high (H-AGE) or low (L-AGE) AGE diets and following superovulation with gonadotropins. We hypothesize that H-AGE diet is associated with increased AGE deposition and RAGE expression in various stages of ovarian follicular development, and superovulation with gonadotropins may alter these changes. C57BL/6J mice were fed low L-AGE (n=10) or H-AGE (n=10) diet for 12 weeks.
View Article and Find Full Text PDFAnim Sci J
January 2025
Laboratory of Animal Breeding and Reproduction, Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan.
Heat stress negatively affects the reproductive function of in animals and humans. Although a relationship between heat and oxidative stress has been suggested, the underlying mechanism has not been sufficiently examined in reproduction-related cells. Therefore, we aimed to investigate whether heat stress induces oxidative stress using a variety of reproduction-related cells including bovine placental and cumulus-granulosa cells, human cell lines derived from cervical and endometrial cancers, and fibroblasts derived from endometrium.
View Article and Find Full Text PDFIUBMB Life
January 2025
Department of Reproductive Medical Center, First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
Abnormality of granulosa cells (GCs) is the critical cause of follicular atresia in premature ovarian failure (POF). RIPK3 is highly expressed in GCs derived from atretic follicles. We focus on uncovering how RIPK3 contributes to ovarian GC senescence.
View Article and Find Full Text PDFInt J Gynaecol Obstet
January 2025
Center for Reproductive Medicine, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, China.
Objective: Polycystic ovary syndrome (PCOS) is a diverse condition with an unknown cause. The precise mechanism underlying ovulatory abnormalities in PCOS remains unclear. It is widely believed that malfunction of granulosa cells is the primary factor contributing to aberrant follicular formation in PCOS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!