Antibiotic-producing use the diadenylate cyclase DisA to synthesize the nucleotide second messenger c-di-AMP, but the mechanism for terminating c-di-AMP signaling and the proteins that bind the molecule to effect signal transduction are unknown. Here, we identify the AtaC protein as a c-di-AMP-specific phosphodiesterase that is also conserved in pathogens such as and AtaC is monomeric in solution and binds Mn to specifically hydrolyze c-di-AMP to AMP via the intermediate 5'-pApA. As an effector of c-di-AMP signaling, we characterize the RCK_C domain protein CpeA. c-di-AMP promotes interaction between CpeA and the predicted cation/proton antiporter, CpeB, linking c-di-AMP signaling to ion homeostasis in Actinobacteria. Hydrolysis of c-di-AMP is critical for normal growth and differentiation in , connecting ionic stress to development. Thus, we present the discovery of two components of c-di-AMP signaling in bacteria and show that precise control of this second messenger is essential for ion balance and coordinated development in .

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132281PMC
http://dx.doi.org/10.1073/pnas.1917080117DOI Listing

Publication Analysis

Top Keywords

c-di-amp signaling
16
c-di-amp
9
second messenger
8
c-di-amp hydrolysis
4
hydrolysis phosphodiesterase
4
phosphodiesterase atac
4
atac promotes
4
promotes differentiation
4
differentiation multicellular
4
multicellular bacteria
4

Similar Publications

Membrane-embedded CdaA is required for efficient synthesis of second messenger cyclic di-AMP.

Commun Biol

December 2024

Department of Biochemistry, Groningen Biomolecular Science and Biotechnology Institute, University of Groningen, Nijenborgh 3, Groningen, The Netherlands.

Cyclic di-adenylate monophosphate (cyclic di-AMP) is an important second messenger in microorganisms. Cyclic di-AMP regulates bacterial cell volume and turgor via control of potassium and compatible solute transport but is also involved in many other processes, including the activation of the metazoan innate immune response to bacterial infections. We compare the activity of full-length membrane-embedded CdaA, the enzyme that synthesizes cyclic di-AMP, with the water-soluble catalytic domain CdaA-DAC.

View Article and Find Full Text PDF

Cyclic diadenosine monophosphate (c-di-AMP) is a recently discovered second messenger that modulates several signal transduction pathways in bacterial and host cells. Besides the bacterial system, c-di-AMP signaling is also connected with the host cytoplasmic surveillance pathways (CSP) that induce type-I IFN responses through STING-mediated pathways. Additionally, c-di-AMP demonstrates potent adjuvant properties, particularly when administered alongside the Bacillus Calmette-Guérin (BCG) vaccine through mucosal routes.

View Article and Find Full Text PDF

The bacterial pathogen forms multicellular communities known as biofilms in which cells are held together by an extracellular matrix principally composed of repurposed cytoplasmic proteins and extracellular DNA. These biofilms assemble during infections or under laboratory conditions by growth on medium containing glucose, but the intracellular signal for biofilm formation and its downstream targets were unknown. Here, we present evidence that biofilm formation is triggered by a drop in the levels of the second messenger cyclic-di-AMP.

View Article and Find Full Text PDF

Background: Bacterial cyclic dinucleotides (CDNs), cyclic di-guanosine monophosphate (c-di-GMP), and cyclic di-adenosine monophosphate (c-di-AMP) upregulate interferon signaling proteins of human gingival fibroblasts (HGFs). However, the simultaneous effect of bacterial CDNs and lipopolysaccharides (LPS) on the HGF proteome is unknown.

Aim: The aim was to apply an unbiased proteomics approach to evaluate how simultaneous exposure to CDNs and (Pg) LPS affect the global proteome of HGFs.

View Article and Find Full Text PDF

New Horizons in Micro/Nanoplastic-Induced Oxidative Stress: Overlooked Free Radical Contributions and Microbial Metabolic Dysregulations in Anaerobic Digestion.

Environ Sci Technol

December 2024

Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, P. R. China.

Article Synopsis
  • Excessive reactive oxygen species (ROS) production caused by micro/nanoplastics (MPs/NPs) is toxic to anaerobic microbes, negatively impacting their viability and methane production during anaerobic digestion (AD).
  • The study identified that polypropylene (PP)-MPs/NPs increase concentrations of environmentally persistent free radicals (EPFRs) and hydroxyl radicals (OH), leading to a significant rise in ROS and an up to 50% decrease in methane output at high concentrations of PP-MPs/NPs.
  • Changes in microbial communities were observed, shifting from hydrogenotrophic methanogens to acetoclastic and hydrogenotrophic ones due to their superior ability to cope with ROS-induced stress, along with down
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!