Pluripotent stem cells (PSCs) have demonstrated great utility in improving our understanding of mammalian development and continue to revolutionise regenerative medicine. Thanks to the improved understanding of pluripotency in mice and humans, it has recently become feasible to generate stable livestock PSCs. Although it is unlikely that livestock PSCs will be used for similar applications as their murine and human counterparts, new exciting applications that could greatly advance animal agriculture are being developed, including the use of PSCs for complex genome editing, cellular agriculture, gamete generation and invitro breeding schemes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1071/RD19272 | DOI Listing |
Animals (Basel)
June 2024
Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, Yangzhou University, Yangzhou 225009, China.
Embryonic stem cells (ESCs) are remarkably undifferentiated cells that originate from the inner cell mass of the blastocyst. They possess the ability to self-renew and differentiate into multiple cell types, making them invaluable in diverse applications such as disease modeling and the creation of transgenic animals. In recent years, as agricultural practices have evolved from traditional to biological breeding, it has become clear that pluripotent stem cells (PSCs), either ESCs or induced pluripotent stem cells (iPSCs), are optimal for continually screening suitable cellular materials.
View Article and Find Full Text PDFBMC Genomics
May 2024
College of Animal Science, Shanxi Agricultural University, Taigu, 030801, China.
Background: Skeletal muscle development and fat deposition have important effects on meat quality. The study of regulating skeletal muscle development and fat deposition is of great significance in improving the quality of carcass and meat. In the present study, whole transcriptome sequencing (including RNA-Seq and miRNA-Seq) was performed on the longissimus dorsi muscle (LDM) of Jinfen White pigs at 1, 90, and 180 days of age.
View Article and Find Full Text PDFMethods Mol Biol
December 2023
Division of Translational Bioscience, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
Groundbreaking work by Takahashi and Yamanaka in 2006 demonstrated that non-embryonic cells can be reprogrammed into pluripotent stem cells (PSCs) by forcing the expression of a defined set of transcription factors in culture, thus overcoming ethical concerns linked to embryonic stem cells. Induced PSCs have since revolutionized biomedical research, holding tremendous potential also in other areas such as livestock production and wildlife conservation. iPSCs exhibit broad accessibility, having been derived from a multitude of cell types and species.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot 010070, China.
The Arbas cashmere goat is a unique biological resource that plays a vital role in livestock husbandry in China. LCDM is a medium with special small molecules (consisting of human LIF, CHIR99021, (S)-(+)-dimethindene maleate, and minocycline hydrochloride) for generation pluripotent stem cells (PSCs) with bidirectional developmental potential in mice, humans, pigs, and bovines. However, there is no report on whether LCDM can support for generation of PSCs with the same ability in Arbas cashmere goats.
View Article and Find Full Text PDFGene Expr Patterns
December 2023
Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. Electronic address:
Generating stable livestock pluripotent stem cells (PSCs) can be used for complex genome editing, cellular agriculture, gamete generation, regenerative medicine and in vitro breeding schemes. Over the past decade, significant progress has been made in characterizing pluripotency markers for livestock species. In this study, we investigated embryo development and gene expression of the core pluripotency triad (OCT4, NANOG, SOX2) and cell lineage commitment markers (REX1, CDX2, GATA4) in the presence of three small molecules and their combination [PD0325901 (FGF inhibitor), SB431542 (TGFβ inhibitor), and CHIR99021 (GSK3B inhibitor)] from day 2-7 post-insemination in goat.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!