Background: Chlorogenic Acid (CA) has diverse, recognized health effects.
Objective: This study aimed to explore the effects of CA on fat reduction and the underlying mechanism of these effects.
Materials And Methods: First, we established a Monosodium Glutamate (MSG)-induced obesity mouse model and subjected the mice to 4 weeks of CA gavage. Then, we established an oleic acidinduced model of human fatty liver in HepG2 cells, and administered a CA intervention to the cells for 48 h. Finally, we used Oil red O staining, biochemical detection kits, RT-PCR and Western blot analysis to evaluate the effects of CA on fat reduction and on related pathways.
Results: The CA treatment could reduce fat accumulation in the liver and reduce blood lipid levels. In addition, CA decreased the mRNA and protein levels of peroxisome proliferator-activated receptor gamma, coactivator 1 α (PGC-1α) and Uncoupling Protein 1 (UCP1) in the MSG-induced obesity mouse model and the oleic acid-induced HepG2 cells.
Conclusion: Based on the above results, we deduced that CA could reduce body weight and fat deposition in vitro and in vivo and that the mechanism may be related to the PGC-1α/UCP-1 pathway. CA can be developed as a drug to lower blood lipids and to treat obesity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2174/1389201021666200318124922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!