Understanding how heterogeneous cancer cell populations migrate collectively is of paramount importance to arrest metastasis. Here, we applied 3D culture-based approaches for in vitro modeling of the collective migration of squamous carcinoma cells and examine the impact of epithelial and mesenchymal cell interactions on this type of migration. We show that both mesenchymal N-cadherin-expressing cancer cells and cancer-associated fibroblasts cooperate in collective migration of epithelial cancer cells by leading their collective migration. This was consistent with the observed distribution of E-cadherin/N-cadherin in the human carcinoma tissues of head and neck. The presence of "leader" mesenchymal cancer cells or "leader" fibroblasts was significantly associated with metastasis development, recurrent disease and low overall disease survival in head and neck squamous cell carcinomas (HNSCC). In silico analysis of independent public datasets revealed that increased N-cadherin expression in the heterogeneous cancer tissues is associated with disease progression not only in HNSCC but also in other prevalent tumors, such as colorectal, breast and lung cancer. Collectively, our data highlight the importance of mesenchymal cells in collective cell migration and disease progression, findings that may have a broad significance in cancer, especially in those in which aberrant N-cadherin expression negatively impacts disease survival.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7140612 | PMC |
http://dx.doi.org/10.3390/cells9030731 | DOI Listing |
Nat Ecol Evol
January 2025
Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
Rapid growth in bio-logging-the use of animal-borne electronic tags to document the movements, behaviour, physiology and environments of wildlife-offers opportunities to mitigate biodiversity threats and expand digital natural history archives. Here we present a vision to achieve such benefits by accounting for the heterogeneity inherent to bio-logging data and the concerns of those who collect and use them. First, we can enable data integration through standard vocabularies, transfer protocols and aggregation protocols, and drive their wide adoption.
View Article and Find Full Text PDFElife
January 2025
Department of Cell and Developmental Biology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, United States.
Niches are often found in specific positions in tissues relative to the stem cells they support. Consistency of niche position suggests that placement is important for niche function. However, the complexity of most niches has precluded a thorough understanding of how their proper placement is established.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biology of the Cell (BIOC), CNRS UMR7654, École Polytechnique, Institut Polytechnique de Paris, Palaiseau, France.
The molecular mechanisms underlying cell migration remain incompletely understood. Here, we show that knock-out cells for NHSL3, the most recently identified member of the Nance-Horan Syndrome family, are more persistent than parental cells in single cell migration, but that, in wound healing, follower cells are impaired in their ability to follow leader cells. The NHSL3 locus encodes several isoforms.
View Article and Find Full Text PDFScience
January 2025
Department of Migration, Max Planck Institute of Animal Behavior, Radolfzell, Germany.
Long-distance migration, common in passerine birds, is rare and poorly studied in bats. Piloting a 1.2-gram IoT (Internet of Things) tag with onboard processing, we tracked the daily location, temperature, and activity of female common noctules () during spring migration across central Europe up to 1116 kilometers.
View Article and Find Full Text PDFMol Biol Cell
January 2025
Department of Biology, University of North Carolina at Chapel Hill, CB#3280, Chapel Hill, NC 27599-3280, USA.
Collective cell migration is critical for morphogenesis, homeostasis, and wound healing. Migrating mesenchymal cells form tissues that shape the body's organs. We developed a powerful model, exploring how nascent myotubes migrate onto the testis during pupal development, forming the muscles ensheathing it and creating its characteristic spiral shape.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!