Background: Platelet engraftment following cord blood (CB) transplantation remains a significant hurdle to this day. The uncontrolled growth of ice, a process referred to as ice recrystallization, is one of several mechanisms that lead to cell loss and decreased potency during freezing and thawing. We hypothesized that reducing cell damage induced by ice recrystallization in CB units (CBUs) would reduce losses of stem and progenitor cells and therefore improve engraftment. We previously demonstrated that the ice recrystallization inhibitor (IRI) N-(2-fluorophenyl)-D-gluconamide (IRI 2) increases the postthaw recovery of CB progenitors. Herein, we set out to ascertain whether IRI 2 can enhance platelet and bone marrow engraftment activity of hematopoietic stem cells (HSCs) in cryopreserved CBUs using a serial transplantation model.
Study Design And Methods: CBUs were processed following standard volume/red blood cell reduction procedure and portions frozen with dimethyl sulfoxide (DMSO) supplemented or not with IRI 2. Thawed CB samples were serially transplanted into immunodeficient mice.
Results: Our results show that supplementation of DMSO with IRI 2 had several beneficial effects. Specifically, higher levels of human platelets were observed in the peripheral blood (p < 0.05; n = 4) upon transplant of CBUs preserved with the IRIs. In addition, human BM chimerism and the number of human CFU progenitors in the bone marrow were superior in IRI 2 recipients compared to DMSO recipients. Moreover, IRI 2 had no negative impact on the multilineage differentiation and self-renewal activities of HSCs.
Discussion: Taken together, these results demonstrate that supplementation of a hematopoietic graft with IRI can improve the postthaw engraftment activities of HSCs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.15759 | DOI Listing |
Inorg Chem
January 2025
Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Katahira 2-1-1, Aoba-ku, Sendai 980-8577, Japan.
Sodium borohydride dihydrate (NaBH·2HO) forms through dihydrogen bonding between the hydridic hydrogen of the BH ion and the protonic hydrogen of the water molecule. High-pressure structural changes in NaBH·2HO, observed up to 11 GPa through X-ray diffraction and Raman scattering spectroscopy, were analyzed to assess the influence of dihydrogen bonds on its crystal structure. At approximately 4.
View Article and Find Full Text PDFFood Chem
December 2024
Department of Food Science, The University of Tennessee, Knoxville (UTK), TN 37996, United States. Electronic address:
The glycomacropeptide (GMP) present in the cheese whey byproduct can be an excellent antifreezing agent due to its unique molecular structure. The objective of this study was to concentrate this peptide and investigate its ice recrystallization inhibition (IRI) ability. Heat denaturation of the non-GMP proteins and preparative liquid chromatography were used to create fraction 1 (F1) and fraction 2 (F2) and these were tested using the splat assay and a modified sucrose sandwich assay to investigate their IRI activity.
View Article and Find Full Text PDFLangmuir
January 2025
School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
Ice formation poses a significant challenge across various fields, from industrial processes to biological preservation. Developing antifreeze agents and recognizing the antifreeze mechanism have gained considerable attention. Herein, a series of poly(l-methionine) derivatives, poly(-carboxymethyl-l-methionine sulfonium) (PMetA), poly(-methyl-l-methionine sulfonium chloride) (PMetM), and poly(-carbamidomethyl-l-methionine sulfonium chloride) (PMetAM), with carboxyl, methyl, and acetamide groups, respectively, are synthesized and investigated for antifreeze.
View Article and Find Full Text PDFFoods
December 2024
College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
This study investigated the effect of various concentrations (0.01%, 0.05%, 0.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Federal University of Lavras, Department of Food Science, Lavras, Minas Gerais 37200-900, Brazil. Electronic address:
The application of cellulose nanofibers (CNF) as cryoprotectants in frozen foods has rarely been explored. In this study, the cryoprotective effect of CNF (2, 4 and 6 % w/w) on mechanically separated chicken meat (MSCM) surimi-like material was investigated, during frozen storage (5 and 60 days) under temperature fluctuation. Surimi-like without cryopreservation agents was more susceptible to protein oxidation due to ice recrystallization.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!