Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The nucleus accumbens (NAc) contributes to behavioral inhibition and compulsions, but circuit mechanisms are unclear. Recent evidence suggests that amygdala and thalamic inputs exert opposing control over behavior, much like direct and indirect pathway output neurons. Accordingly, opponent processes between these NAc inputs or cell types may underlie efficient reward seeking. We assess the contributions of these circuit elements to mouse operant behavior during recurring conditions when reward is and is not available. Although direct pathway stimulation is rewarding and indirect pathway stimulation aversive, the activity of both cell types is elevated during periods of behavioral suppression, and the inhibition of either cell-type selectively increases unproductive reward seeking. Amygdala and thalamic inputs are also necessary for behavioral suppression, even though they both support self-stimulation and innervate different NAc subregions. These data suggest that efficient reward seeking relies on complementary activity across NAc cell types and inputs rather than opponent processes between them.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2020.02.095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!