Significant transcriptional changes in mature daughter Varroa destructor mites during infestation of different developmental stages of honeybees.

Pest Manag Sci

Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, P. R. China.

Published: August 2020

Background: Varroa destructor is considered a major cause of honeybee (Apis mellifera) colony losses worldwide. Although V. destructor mites exhibit preference behavior for certain honeybee lifecycle stages, the mechanism underlying host finding and preference remains largely unknown.

Results: By using a de novo transcriptome assembly strategy, we sequenced the mature daughter V. destructor mite transcriptome during infestation of different stages of honeybees (brood cells, newly emerged bees and adult bees). A total of 132 779 unigenes were obtained with an average length of 2745 bp and N50 of 5706 bp. About 63.1% of the transcriptome could be annotated based on sequence homology to the predatory mite Metaseiulus occidentalis proteins. Expression analysis revealed that mature daughter mites had distinct transcriptome profiles after infestation of different honeybee stages, and that the majority of the differentially expressed genes (DEGs) of mite infesting adult honeybees were down-regulated compared to that infesting the sealed brood cells. Gene ontology and KEGG pathway enrichment analyses showed that a large number of DEGs were involved in cellular process and metabolic process, suggesting that Varroa mites undergo metabolic adjustment to accommodate the cellular, molecular and/or immune response of the honeybees. Interestingly, in adult honeybees, some mite DEGs involved in neurotransmitter biosynthesis and transport were identified and their levels of expression were validated by quantitative polymerase chain reaction (qPCR).

Conclusion: These results provide evidence for transcriptional reprogramming in mature daughter Varroa mites during infestation of honeybees, which may be relevant to understanding the mechanism underpinning adaptation and preference behavior of these mites for honeybees. © 2020 Society of Chemical Industry.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ps.5821DOI Listing

Publication Analysis

Top Keywords

mature daughter
16
daughter varroa
8
varroa destructor
8
destructor mites
8
mites infestation
8
stages honeybees
8
preference behavior
8
brood cells
8
adult honeybees
8
degs involved
8

Similar Publications

Giant cell tumors (GCTs) are benign but locally aggressive bone neoplasms that primarily affect skeletally mature individuals. They are characterized by a tendency for recurrence and being associated with significant morbidity. Traditional treatment has focused on surgical resection; however, the role of medical therapies, such as Denosumab, a bone anti-resorptive drug, which has been Food and Drug Administration (FDA)-approved for unresectable GCTs since 2013, recently has gained prominence.

View Article and Find Full Text PDF

[Advances in the study of viruses inhibiting the production of advanced autophagy or interferon through Rubicon to achieve innate immune escape].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

January 2025

Department of Pathogen Biology and Immunology, Kunming Medical University, Kunming 650500, China. *Corresponding authors, E-mail:

The innate immune response is the first line of defense for the host against viral infections. Targeted degradation of pathogenic microorganisms through autophagy, in conjunction with pattern recognition receptors synergistically inducing the production of interferon (IFN), constitutes an important pathway for the body to resist viral infections. Rubicon, a Run domain Beclin 1-interacting and cysteine-rich domain protein, has an inhibitory effect on autophagy and IFN production.

View Article and Find Full Text PDF

Androgens induce renal synthesis of urinary lipocalin-family protein, a potential inter-sexual transmitter in viviparous rockfish.

Biochim Biophys Acta Gen Subj

January 2025

Division of Marine Life Science, Faculty of Fisheries Sciences, Hokkaido University, 3-1-1 Minato, Hakodate, Hokkaido 041-8611, Japan. Electronic address:

In viviparous black rockfish (Sebastes schlegelii), the kidney of reproductive-phase males actively produces lipocalin-type prostaglandin D synthase homolog (LPGDSh) protein, which is presumably involved in inter-sexual communication when emitted in the urine. The present study was undertaken to discover whether androgens and their nuclear receptors (Ars) are engaged in regulation of renal LPGDSh protein synthesis in black rockfish. Quantitative real-time polymerase chain reaction, in conjunction with immunohistochemistry and highly sensitive enzyme-linked immunosorbent assay, revealed that intra-abdominal administration of a synthetic androgen, 17α-methyltestosterone (MT), to juvenile black rockfish induced their renal expression of LPGDSh transcript and protein.

View Article and Find Full Text PDF

Biomolecular condensates are dynamic membraneless compartments that regulate a myriad of cellular functions. A particular type of physiological condensate called stress granules (SGs) has gained increasing interest due to its role in the cellular stress response and various diseases. SGs, composed of several hundred RNA-binding proteins, form transiently in response to stress to protect mRNAs from translation and disassemble when the stress subsides.

View Article and Find Full Text PDF

Background Aims: With novel therapies improving prognosis, the complications of multiple myeloma after multi-line treatment, particularly myelosuppression, have become a crucial determinant of long-term outcomes. Non-myeloablative allogeneic hematopoietic stem cell transplantation is a feasible option, but the transplant-related mortality rate remains high. Our study presents a relapsed/refractory multiple myeloma patient with a 9-year disease history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!