A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

T-2 toxin cytotoxicity mediated by directly perturbing mitochondria in human gastric epithelium GES-1 cells. | LitMetric

T-2 toxin cytotoxicity mediated by directly perturbing mitochondria in human gastric epithelium GES-1 cells.

J Appl Toxicol

Department of Pharmacy, Henan Provincial People's Hospital, Department of Pharmacy of Centeral China Fuwai Hospital, Centeral China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Published: August 2020

T-2 toxin is one of the most toxic trichothecenes and harmful to human health and animal husbandry. The mechanism underlying its growth suppression remains unclear, especially for mitochondrial damage in human gastric epithelial cells. In the present study, we investigated cell death caused by T-2 toxin in a human gastric epithelial cell line (GES-1) and the possible mechanism of T-2-induced cytotoxicity. T-2 strongly reduced the viability of GES-1 cells in a time- and dose-dependent manner within a small range of concentrations. However, when the concentrations of T-2 were >40 nM, there was no concentration dependence, only time dependence. Moreover, T-2 induced apoptosis, with the activation of caspase-3 in GES-1 and mitochondrial membrane potential (MMP) decrease and cytochrome c release. T-2 also resulted in the accumulation of reactive oxygen species (ROS) and DNA damage with a positive signal of p-H2A.X in GES-1 cells. While T-2 caused a MMP decrease, DNA damage and cell death were not blocked by pretreatment with 3 mM glutathione (GSH), a typical scavenger of ROS. The induction of mitochondrial permeability transition pore (mPTP) regulators voltage-dependent anion channel (VDAC1) and cyclophilin D (CypD) were also observed in T-2-treated cells. Interestingly, cyclosporine A (CsA), a CypD inhibitor, significantly reversed the drop in MMP and the DNA damage, as well as ROS accumulation caused by T-2. Additionally, GES-1 cell death could also be protected to some extent by 4, 4'-diisothiocyanatostilbene-2, 2'-disulfonic acid (DIDS), an inhibitor of VDAC1, especially the combination of CsA and DIDS, and 3 mM GSH could further enhance the effect of CsA + DIDS on cell viability. In conclusion, our present findings indicate that the T-2 induced MMP decrease, DNA damage and cell death, as well as ROS accumulation in GES-1 cells, starts with T-2 directly perturbing the mitochondria triggering ROS generation by acting on CypD and VDAC1. This study presents a new viewpoint for evaluating the toxicity of T-2 toxin.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jat.3973DOI Listing

Publication Analysis

Top Keywords

t-2 toxin
16
ges-1 cells
16
cell death
16
dna damage
16
t-2
12
human gastric
12
mmp decrease
12
directly perturbing
8
perturbing mitochondria
8
cells t-2
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!