It has been demonstrated in numerous studies that bee pollen supplementation shows numerous positive effects on health. However, its impact on bones is largely unknown. The purpose of this study was to investigate the effect of bee pollen supplementation on the tibia biomechanical properties and bone morphometric measures using Japanese quail as an animal model. The experiment was arranged in a 2x2x2 factorial design, with sex, quail line (meat-type or egg-lying type), and bee pollen inclusion (0 or 10 g/kg of feed) as factors. The quails were one-day-old at the beginning of the experiment, they were euthanized after 42 days. Our study showed for the first time unfavorable effects of bee pollen on bones properties. Bee pollen supplementation negatively affected bone structure, irrespective of quails' sex or line type. Bone length (P < 0.001), weight (P < 0.01), and mean relative wall thickness (P < 0.01) and mineralization (P < 0.05) were reduced by bee pollen treatment. For female quails, irrespective of line type, the decrease of yield load (P < 0.001), ultimate load (P < 0.01), yield stress (P < 0.001) and ultimate stress (P < 0.05) was noted. Analysis of growth plate in bone metaphysis showed that bee pollen supplementation slowed the process of bone maturation irrespective of sex (P < 0.05). On contrary, dietary bee pollen positively affected bone homeostasis of trabecular bone in bone metaphysis as bone mineral density increased in experimental groups (P < 0.05). In males, this was the result of the increase of trabecular thickness (P < 0.01), in females due to the reduction of trabecular space (P < 0.001). In conclusion, our results demonstrate that bee pollen (1.0%, 10 g/kg of feed) supplementation caused significant negative effects on the mechanical endurance of the tibia of quails, while showed beneficial effects on trabecular bone histomorphometry.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7080246PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0230240PLOS

Publication Analysis

Top Keywords

bee pollen
40
pollen supplementation
16
bone
12
trabecular bone
12
bee
10
pollen
9
bone histomorphometry
8
japanese quail
8
g/kg feed
8
thickness 001
8

Similar Publications

The volatile profile of bee pollen samples from Central and Eastern Europe was investigated by headspace solid phase microextraction (HS-SPME) combined with gas chromatography-mass spectrometry-olfactometry (GC-MS-O). Sampling conditions were optimized for the extraction of volatiles. Pollen odorants were extracted with six different fiber coatings, five various extraction times, three diverse extraction temperatures and three differing desorption times.

View Article and Find Full Text PDF

Honey is a natural product gathered by honeybees from the pollen and nectar of various plants and flowers. The homeland of the Caucasian honey bee, which draws attention with its honey production and is one of the most productive bee races known in the world, is Northeastern Anatolia in Türkiye. This study aims to determine and correlate the phenolic content and antioxidant activity of 54 honey samples obtained from the most important gene centers of the Caucasian bee in Türkiye.

View Article and Find Full Text PDF

Sugar conditioning combined with nectar nonsugar compounds enhances honey bee pollen foraging in a nectarless diocious crop.

Sci Rep

January 2025

Laboratorio de Insectos Sociales, Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

Recently, it has been shown that sugar‑conditioned honey bees can be biased towards a nectarless dioecious crop as kiwifruit. The challenges for an efficient pollination service in this crop species are its nectarless flowers and its short blooming period. It is known that combined non-sugar compounds (NSCs) present in the floral products of different plants, such as caffeine and arginine, enhance olfactory memory retention in honey bees.

View Article and Find Full Text PDF

Recycling honey bee drone brood for sustainable beekeeping.

J Econ Entomol

December 2024

Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology IFA-Tulln, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria.

Pollination by insects is vital for global agriculture, with honey bees (Apis mellifera L.) being the most important pollinators. Honey bees are exposed to numerous stressors, including disease, pesticides, and inadequate nutrition, resulting in significant colony losses.

View Article and Find Full Text PDF

The honey bee () is the most widely managed pollinator and is vital for crop fertilization. Recently, bee colonies have been suffering high mortality rates, exacerbated by factors such as land-use changes and the use of pesticides. Our work aimed to explore the residues of pesticides in honey-bee-collected pollen and how this contamination was affected by seasonality and the landscape composition.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!