Investments in water and sanitation systems are believed to have led to the decline in typhoid fever in developed countries, such that most cases now occur in regions lacking adequate clean water and sanitation. Exploring seasonal and long-term patterns in historical typhoid mortality in the United States can offer deeper understanding of disease drivers. We fit modified Time-series Susceptible-Infectious-Recovered models to city-level weekly mortality counts to estimate seasonal and long-term typhoid transmission. We examined seasonal transmission separately by city and aggregated by water source. Typhoid transmission peaked in late summer/early fall. Seasonality varied by water source, with the greatest variation occurring in cities with reservoirs. We then fit hierarchical regression models to measure associations between long-term transmission and annual financial investments in water and sewer systems. Overall historical $1 per capita ($16.13 in 2017) investments in the water supply were associated with approximately 5% (95% confidence interval: 3-6%) decreases in typhoid transmission, while $1 increases in the overall sewer system investments were associated with estimated 6% (95% confidence interval: 4-9%) decreases. Our findings aid in the understanding of typhoid transmission dynamics and potential impacts of water and sanitation improvements, and can inform cost-effectiveness analyses of interventions to reduce the typhoid burden.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7105137 | PMC |
http://dx.doi.org/10.1371/journal.pntd.0008048 | DOI Listing |
Int J Food Microbiol
December 2024
College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China. Electronic address:
Salmonella is one of the most common foodborne pathogens. Antimicrobial-resistant Salmonella isolates, especially those resistant to colistin, pose a significant threat to public health worldwide. However, data about the prevalence of mcr-positive Salmonella in animals was few and the dissemination of mcr-positive Salmonella from animals to food, especially eggs, has not been fully addressed.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, United States.
Introduction: Typhoid fever is an infectious disease primarily caused by sv. Typhi ( Typhi), a bacterium that causes as many as 20 million infections and 600,000 deaths annually. Asymptomatic chronic carriers of S.
View Article and Find Full Text PDFAccess Microbiol
September 2024
Department of Animal and Avian Sciences, University of Maryland, College Park, MD 20742, USA.
Due to consumer demand, many conventional poultry farms are now growing poultry without antibiotics or synthetic chemicals. In addition to this, pasture/organic poultry farms have increased significantly in the USA, and they are also antibiotic- and chemical-free. According to recent reports, both antibiotic-free conventional and pasture poultry farmers are facing the re-emergence of bacterial diseases.
View Article and Find Full Text PDFCan J Microbiol
December 2024
Health Canada, Bureau of Microbial Hazards, Food and Nutrition Directorate, Ottawa, Ontario, Canada;
Conjugation is a complex phenomenon involving multiple plasmid, bacterial, and environmental factors. Here we describe an IncI1 plasmid encoding multidrug antibiotic resistance to aminoglycosides, sulfonamides, and third generation cephalosporins. This plasmid is widespread geographically and among One Health animal, human, and environmental sectors.
View Article and Find Full Text PDFPlatelets
December 2024
Department of Immunology and Immunotherapy, College of Medicine and Health, University of Birmingham, Birmingham, UK.
Invasive non-typhoidal infections are responsible for >75 000 deaths/year and >500 000 cases/year globally. Seventy-five percent of these cases occur in Sub-Saharan Africa, an increasing number of which are from multi-drug resistant strains. Interactions between bacteria and platelets can lead to thrombus formation, which can be beneficial for control of infection (immunothrombosis), or harmful through uncontrolled inflammation and organ damage (thromboinflammation).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!