While the capacity for long-chain polyunsaturated fatty acid (LC-PUFA) biosynthesis has been elucidated in vertebrates and several invertebrate phyla, the comparative knowledge in crustaceans remains vague. A key obstacle in mapping the full spectrum of LC-PUFA biosynthesis in crustacean is the limited evidence of the functional activities of enzymes involved in desaturation or elongation of polyunsaturated fatty acid substrates. In this present study, we report on the cloning and functional characterization of two Elovl elongases from the orange mud crab, Sequence and phylogenetic analysis suggest these two Elovl as putative Elovl4 and Elovl6, respectively. Using the recombinant expression system in , we demonstrate the elongation capacity for C18-C22 PUFA substrates in the Elovl4. The Elovl6 elongated saturated fatty acids, monounsaturated fatty acids, and interestingly, C18-C20 PUFA. Taken together, both Elovl fulfill the elongation steps required for conversion of C18 PUFA to their respective LC-PUFA products. Elovl4 is expressed mainly in the hepatopancreas and gill tissues, while Elovl6 is predominant in digestive tissues. The expression of both enzymes was higher in mud crabs fed with vegetable oil-based diets. Tissue fatty acid composition also showed the existence of LC-PUFA biosynthesis intermediate products in tissues expressing these two elongases. In summary, we report here two novel Elovl with PUFA elongating activities in a marine brachyuran. This will contribute significantly to the understanding of the LC-PUFA biosynthesis pathway in crustaceans and advance the development of aquafeed for intensive farming of the mud crab.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.9b06692DOI Listing

Publication Analysis

Top Keywords

lc-pufa biosynthesis
20
elovl4 elovl6
12
mud crab
12
fatty acid
12
fulfill elongation
8
biosynthesis pathway
8
orange mud
8
polyunsaturated fatty
8
fatty acids
8
lc-pufa
6

Similar Publications

The European eel (Anguilla anguilla L.) exhibits a remarkable phenotypic plasticity by occupying both marine and freshwater habitats and transitional areas in between. Because these habitats are characterized by different food sources with different fatty acid compositions, it remains unclear how eels from different habitats obtain essential long-chain polyunsaturated fatty acids (LC-PUFAs) to integrate in their lipids.

View Article and Find Full Text PDF

Modulatory effect of Echium plantagineum oil on the n-3 LC-PUFA biosynthetic capacity of chicken (Gallus gallus).

Poult Sci

January 2025

Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna. Avenida Astrofísico Francisco Sánchez s/n, 38206 La Laguna, Tenerife, Spain.

Poultry can be a sustainable source of eicosapentaenoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) through the bioconversion of dietary alpha-linolenic acid (ALA, 18:3n-3). However, this process is currently limited by the high n-6/n-3 ratio in poultry diets affecting the competition between n-6 and n-3 fatty acids (FA) for the same biosynthetic enzymes, and the rate-limiting Δ6 desaturase which act at both, the first and final steps of DHA synthesis pathway. Echium plantagineum oil (EO) is an unusual source of stearidonic acid (SDA, 18:4n-3) which bypasses the first Δ6 desaturase step potentially increasing n-3 long-chain polyunsaturated fatty acids (LC-PUFA) synthesis.

View Article and Find Full Text PDF

Maternal Long-Chain Polyunsaturated Fatty Acids Status in Pregnancy and Newborn Body Composition.

Nutrients

December 2024

Department of Functional and Organic Food, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776 Warsaw, Poland.

Background: A number of clinical studies have shown a positive association between the maternal -3 PUFA status during pregnancy and fetal and newborn development and health. Despite this well-documented role of -3 PUFAs in pregnancy, data on maternal the LC-PUFAs status during pregnancy in the Indonesian population, to our knowledge, are not yet available. This study reports on the LC-PUFA dietary intake among pregnant women in a suburban population of Bogor City, West Java, Indonesia.

View Article and Find Full Text PDF

Long-chain polyunsaturated fatty acids (LC-PUFAs) are crucial for human health and cannot be produced internally. Bivalves, such as oysters, serve as valuable sources of high-quality PUFAs. The enzyme fatty acid desaturase (FADS) plays a key role in the metabolism of LC-PUFAs.

View Article and Find Full Text PDF

Evaluation of cottonseed oil as a substitute for fish oil in the commercial diet for juvenile swimming crabs ().

Anim Nutr

December 2024

Laboratory of Fish and Shellfish Nutrition, School of Marine Sciences, Ningbo University, Ningbo 315211, China.

Article Synopsis
  • A six-week trial assessed the potential of cottonseed oil (CSO) as a replacement for fish oil (FO) in swimming crab diets, using three diets with varying CSO proportions (0%, 50%, and 100%).
  • Crabs on the all-CSO diet (CSO-100) showed significantly lower growth and survival rates, alongside notable changes in blood chemistry and fatty acid profiles.
  • The study found that while dietary FO replacement with CSO altered muscle composition and gene expression related to lipid metabolism, increased CSO levels also led to changes in muscle volatile substances.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!