Predicting the interactions between drugs and targets plays an important role in the process of new drug discovery, drug repurposing (also known as drug repositioning). There is a need to develop novel and efficient prediction approaches in order to avoid the costly and laborious process of determining drug-target interactions (DTIs) based on experiments alone. These computational prediction approaches should be capable of identifying the potential DTIs in a timely manner. Matrix factorization methods have been proven to be the most reliable group of methods. Here, we first propose a matrix factorization-based method termed 'Coupled Matrix-Matrix Completion' (CMMC). Next, in order to utilize more comprehensive information provided in different databases and incorporate multiple types of scores for drug-drug similarities and target-target relationship, we then extend CMMC to 'Coupled Tensor-Matrix Completion' (CTMC) by considering drug-drug and target-target similarity/interaction tensors. Results: Evaluation on two benchmark datasets, DrugBank and TTD, shows that CTMC outperforms the matrix-factorization-based methods: GRMF, $L_{2,1}$-GRMF, NRLMF and NRLMF$\beta $. Based on the evaluation, CMMC and CTMC outperform the above three methods in term of area under the curve, F1 score, sensitivity and specificity in a considerably shorter run time.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7986629 | PMC |
http://dx.doi.org/10.1093/bib/bbaa025 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!