Critical review of micro-extraction techniques used in the determination of polycyclic aromatic hydrocarbons in biological, environmental and food samples.

Food Addit Contam Part A Chem Anal Control Expo Risk Assess

REQUIMTE-LAQV, Instituto Superior De Engenharia Do Porto, Instituto Politécnico Do Porto , Porto, Portugal.

Published: June 2020

Polycyclic Aromatic Hydrocarbons (PAHs) are ubiquitous environmental contaminants and their accurate determination is very important to human health and environment safety. In this review, sorptive-based micro-extraction techniques [such as Solid-Phase Micro-extraction (SPME), Stir Bar Sorptive Extraction (SBSE), Micro-extraction in Packed Sorbent (MEPS)] and solvent-based micro-extraction [Membrane-Mediated Liquid-Phase Micro-extraction (MM-LPME), Dispersive Liquid-Liquid Micro-extraction (DLLME), and Single Drop Micro-extraction (SDME)] developed for quantification of PAHs in environmental, biological and food samples are reviewed. Moreover, recent micro-extraction techniques that have been coupled with other sample extraction strategies are also briefly discussed. The main objectives of these micro-extraction techniques are to perform extraction, pre-concentration and clean up together as one step, and the reduction of the analysis time, cost and solvent following the green chemistry guidelines.

Download full-text PDF

Source
http://dx.doi.org/10.1080/19440049.2020.1733103DOI Listing

Publication Analysis

Top Keywords

micro-extraction techniques
16
micro-extraction
10
polycyclic aromatic
8
aromatic hydrocarbons
8
food samples
8
critical review
4
review micro-extraction
4
techniques
4
techniques determination
4
determination polycyclic
4

Similar Publications

Paratuberculosis is a debilitating disease of ruminants that causes significant economic loss in both cattle and sheep. Early detection of the disease is crucial to controlling the disease; however, current diagnostic tests lack sensitivity. This study evaluated the potential for volatile organic compounds (VOCs) detected by gas chromatography and an electronic nose (eNose) for use as diagnostic tools to differentiate between Map-infected and non-infected cattle and sheep.

View Article and Find Full Text PDF

Analysis of volatile flavour compounds in different potato varieties and regions and the effect of soil elements on starch content.

Food Chem X

December 2024

Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China.

This study aims to analyze the differences in flavor compounds of potatoes from various varieties and regions, as well as to explore the impact of soil elements on starch content in potatoes. Headspace solid-phase micro-extraction/gas chromatography-mass spectrometry (HS-SPME-GC-MS) was employed to identify volatile flavor compounds in 18 potatoes representing 4 different varieties from 5 different regions. The relative odor activity (rOAV) was utilized for principal component analysis to establish a comprehensive scoring model for potato volatile flavor compounds.

View Article and Find Full Text PDF

Rationale: The volatile organic compounds (VOCs) of Alpinia katsumadai Hayata (AKH) play a key role in determining its effects such as organoleptic properties, medicinal properties, and consumer preferences. The nonmedicinal parts (roots, fibrous roots, stems, leaves, and shells) in AKH are also rich in VOCs and different degrees of antibacterial activity. Therefore, it is important to comprehensively characterize the VOCs in different parts of AKH and learn about their potential antimicrobial abilities.

View Article and Find Full Text PDF

The capacity of indoor plants including green walls to capture, deposit and remediate individual volatile organic compounds (VOCs) has been well documented. However, in realistic settings, plant systems are exposed to a complex mixture of VOCs from highly varied various emission sources. Gasoline vapour is one of the major sources of these emissions, containing high concentrations of the carcinogens benzene, toluene, ethylbenzene and xylene (BTEX).

View Article and Find Full Text PDF

Ethyl glucuronide (EtG) in hair is a reliable biomarker of alcohol consumption habits. Due to its small concentration incorporated into hair, analytical methods sensitive enough to reliably quantify EtG in this matrix are required. Sample preparation is critical in hair analysis, especially for EtG, for which extraction efficiency and matrix effect can strongly influence the results; furthermore, miniaturized methods are sought, to reduce solvent use and times of sample preparation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!