Implications of the fractional charge of hydroxide at the electrochemical interface.

Phys Chem Chem Phys

SUNCAT Center for Interface Science and Catalysis, Department of Chemical Engineering, Stanford University, Stanford, California 94305, USA.

Published: April 2020

Rational design of materials that efficiently convert electrical energy into chemical bonds will ultimately depend on a thorough understanding of the electrochemical interface at the atomic level. Towards this goal, the use of density functional theory (DFT) at the generalized gradient approximation (GGA) level has been applied widely in the past 15 years. In the calculation of electrochemical reaction energetics using GGA-DFT, it is frequently implicitly assumed that ions in the Helmholtz plane have unit charge. However, the ion charge is observed to be fractional near the interface through both a capacitor model and through Bader charge partitioning. In this work, we show that this spurious charge transfer can be effectively mitigated by continuum charging of the electrolyte. We then show that, similar to hydronium, the observed fractional charge of hydroxide is not due to a GGA level self-interaction error, as the partial charge is observed even when using hybrid level exchange-correlation functionals.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cp05952kDOI Listing

Publication Analysis

Top Keywords

fractional charge
8
charge hydroxide
8
electrochemical interface
8
gga level
8
charge observed
8
observed fractional
8
charge
7
implications fractional
4
hydroxide electrochemical
4
interface rational
4

Similar Publications

Excitons, Coulomb-driven bound states of electrons and holes, are typically composed of integer charges. However, in bilayer systems influenced by charge fractionalization, a more interesting form of interlayer exciton can emerge, in which pairing occurs between constituents that carry fractional charges. Despite numerous theoretical predictions for these fractional excitons, their experimental observation has remained unexplored.

View Article and Find Full Text PDF

Solar-Driven Nanofluidic Ion Regulation for Fractional Salt Crystallization and Reutilization.

ACS Nano

January 2025

Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.

Solar water evaporation (SWE) has emerged as an appealing method for water and salt recovery from hypersaline wastewater. However, different ions usually transfer and accumulate uncontrollably during ion-water separation, making salt fractionalization impractical for conventional SWE, and the resulting mixed salts are hard to use and still require significant costs for disposal. To achieve salt fractionalization and reutilization, achieving ion-water and ion-ion separation simultaneously are crucial in advancing SWE toward sustainability.

View Article and Find Full Text PDF

A fundamental manifestation of the nontrivial correlations of an incompressible fractional quantum Hall (FQH) state is that an electron added to it disintegrates into more elementary particles, namely fractionally-charged composite fermions (CFs). We show here that the Girvin-MacDonald-Platzman (GMP) density-wave excitation of the ν=n/(2pn±1) FQH states also splits into more elementary single CF excitons. In particular, the GMP graviton, which refers to the recently observed spin-2 neutral excitation in the vanishing wave vector limit [Liang et al.

View Article and Find Full Text PDF

Magnetotransport of conventional semiconductor based double layer systems with barrier suppressed interlayer tunneling has been a rewarding subject due to the emergence of an interlayer coherent state that behaves as an excitonic superfluid. Large angle twisted bilayer graphene offers unprecedented strong interlayer Coulomb interaction, since both layer thickness and layer spacing are of atomic scale and a barrier is no more needed as the twist induced momentum mismatch suppresses tunneling. The extra valley degree of freedom also adds richness.

View Article and Find Full Text PDF

Recently, vortex beams have been widely studied and applied because they carry orbital angular momentum (OAM). It is widely acknowledged in the scientific community that fractional OAM does not typically exhibit stable propagation; notably, the notion of achieving stable propagation with dual-fractional OAM within a single optical vortex has been deemed impracticable. Here, we address the scientific problem through the combined modulation of phase and polarization, resulting in the generation of a dual-fractional OAM vector vortex beam that can stably exist in free space.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!