Pulmonary Arterial Hypertension is regarded as a devastating disease, complicating Connective Tissue Diseases. Although much progress has been achieved in the last 20 years, several unfulfilled needs in diagnosis and management of PAH in these patients may still be identified. After a systematic review of the literature and integrating results from the latest research articles, key clinical issues for the screening and diagnosis of Pulmonary Arterial Hypertension in Connective Tissue Disorder Patients and specifically Scleroderma patients are described in this article, allowing physicians to contribute to early diagnosis of patients with Scleroderma-associated Pulmonary Arterial Hypertension.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7045968PMC
http://dx.doi.org/10.31138/mjr.30.2.90DOI Listing

Publication Analysis

Top Keywords

pulmonary arterial
16
arterial hypertension
16
connective tissue
12
hypertension connective
8
early diagnosis
8
pulmonary
4
hypertension
4
tissue disorders
4
disorders emerging
4
emerging role
4

Similar Publications

Background: Currently, there is a deficiency in nomograms specifically designed for predicting the failure of high-flow nasal cannula (HFNC) oxygen therapy in patients with hypercapnic acute respiratory failure (hypercapnic ARF). The aim of this retrospective study is to develop and evaluate a nomogram that assesses the risk of HFNC failure in this patient population.

Methods: Patients with ARF and hypercapnia (PaCO ≥ 45 mmHg in the initial arterial blood gas) who received HFNC in the intensive care unit (ICU) from January 1, 2020 to December 31, 2023 were enrolled in this study.

View Article and Find Full Text PDF

Objectives: To update the 2017 European Alliance of Associations for Rheumatology (EULAR) recommendations for treatment of systemic sclerosis (SSc), incorporating new evidence and therapies.

Methods: An international task force was convened in line with EULAR standard operating procedures. A nominal group technique exercise was performed in two rounds to define questions underpinning a subsequent systematic literature review.

View Article and Find Full Text PDF

Platelet membrane-modified exosomes targeting plaques to activate autophagy in vascular smooth muscle cells for atherosclerotic therapy.

Drug Deliv Transl Res

January 2025

Center for Coronary Heart Disease, Department of Cardiology, National Center for Cardiovascular Diseases of China, State Key Laboratory of Cardiovascular Disease, Fu Wai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 167 Beilishi Rd, Beijing, 100037, China.

Atherosclerosis is one of the leading causes of ischemic cardiovascular disease worldwide. Recent studies indicated that vascular smooth muscle cells (VSMCs) play an indispensable role in the progression of atherosclerosis. Exosomes derived from mesenchymal stem cells (MSCs) have demonstrated promising clinical applications in the treatment of atherosclerosis.

View Article and Find Full Text PDF

This study investigated the sexual dimorphism in right ventricle (RV) remodeling in right heart failure susceptible Fischer CDF rats using the pulmonary artery banding (PAB) model. Echocardiography and hemodynamic measurements were performed in adult male and female Fischer CDF rats at 1- or 2-weeks post-PAB. RV systolic pressure and RV hypertrophy were significantly elevated in PAB rats compared to sham control at 1- and 2-weeks post-PAB; however, no differences were observed between male and female rats.

View Article and Find Full Text PDF

Hepatopulmonary syndrome (HPS) and portopulmonary hypertension (POPH) are two distinct pulmonary vascular complications seen in patients with liver disease and/or portal hypertension. HPS is characterized by disturbed gas exchange and hypoxemia because of intrapulmonary vascular dilatations. POPH is defined by pulmonary arterial hypertension, which might lead to right heart failure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!