Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Objective: Measures of spinal cord structure can be a useful phenotype to track disease severity and development; this observational study measures the hereditability of cervical spinal cord anatomy and its correlates in healthy human beings.
Methods: Twin data from the Human Connectome Project were analyzed with semiautomated spinal cord segmentation, evaluating test-retest reliability and broad-sense heritability with an AE model. Relationships between spinal cord metrics, general physical measures, regional brain structural measures, and motor function were assessed.
Results: We found that the spinal cord C2 cross-sectional area (CSA), left-right width (LRW), and anterior-posterior width (APW) are highly heritable (85%-91%). All measures were highly correlated with the brain volume, and CSA only was positively correlated with thalamic volumes ( = 0.005) but negatively correlated with the occipital cortex area ( = 0.001). LRW was correlated with the participant's height ( = 0.00027). The subjects' sex significantly influenced these metrics. Analyses of a test-retest data set confirmed validity of the approach.
Conclusions: This study provides the evidence of genetic influence on spinal cord structure. MRI metrics of cervical spinal cord anatomy are robust and not easily influenced by nonpathological environmental factors, providing a useful metric for monitoring normal development and progression of neurodegenerative disorders affecting the spinal cord, including-but not limited to-spinal cord injury and MS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7061306 | PMC |
http://dx.doi.org/10.1212/NXG.0000000000000401 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!