Identification of Long Noncoding RNA Associated ceRNA Networks in Rosacea.

Biomed Res Int

Department of Dermatology, West China Hospital, Sichuan University, Chengdu 610041, China.

Published: December 2020

Rosacea is a chronic and relapsing inflammatory cutaneous disorder with highly variable prevalence worldwide that adversely affects the health of patients and their quality of life. However, the molecular characterization of each rosacea subtype is still unclear. Furthermore, little is known about the role of long noncoding RNAs (lncRNAs) in the pathogenesis or regulatory processes of this disorder. In the current study, we established lncRNA-mRNA coexpression networks for three rosacea subtypes (erythematotelangiectatic, papulopustular, and phymatous) and performed their functional enrichment analyses using Gene Onotology, KEGG, GSEA, and WGCNA. Compared to the control group, 13 differentially expressed lncRNAs and 525 differentially expressed mRNAs were identified in the three rosacea subtypes. The differentially expressed genes identified were enriched in four signaling pathways and the GO terms found were associated with leukocyte migration. In addition, we found nine differentially expressed lncRNAs in all three rosacea subtype-related networks, including NEAT1 and HOTAIR, which may play important roles in the pathology of rosacea. Our study provided novel insights into lncRNA-mRNA coexpression networks to discover the molecular mechanisms involved in rosacea development that can be used as future targets of rosacea diagnosis, prevention, and treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060422PMC
http://dx.doi.org/10.1155/2020/9705950DOI Listing

Publication Analysis

Top Keywords

differentially expressed
16
three rosacea
12
rosacea
9
long noncoding
8
lncrna-mrna coexpression
8
coexpression networks
8
rosacea subtypes
8
expressed lncrnas
8
identification long
4
noncoding rna
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!