AI Article Synopsis

  • CCL2 is a proinflammatory chemokine linked to cognitive impairments in HIV-1 patients, contributing to HIV-associated neurocognitive disorder (HAND).
  • In a study, researchers injected CCL2 into rats to induce cognitive impairment and tested the protective effects of Tanshinone IIA, finding that it significantly improved learning and memory.
  • Tanshinone IIA was shown to reduce oxidative stress, inflammation, and apoptosis in the rats' brains, suggesting its potential as a therapeutic agent for HAND.

Article Abstract

Chemokine CC motif ligand 2 (CCL2) is one of the most recognized proinflammatory chemokines, and the expression of CCL2 in the cerebrospinal fluid of patients infected with HIV-1 is significantly higher than that of healthy people. As such, it is seen as an important cause of HIV-associated neurocognitive disorder (HAND). Our previous investigation has confirmed the pathological role of CCL2 in mediating brain damage leading to cognitive dysfunction. Currently, however, research on therapeutic drugs for the central nervous system targeting CCL2 is very limited. Our present study used brain stereotactic technology to induce cognitive impairment in rats by injecting CCL2 (5 ng) into the bilateral hippocampus. To investigate the protective effect and mechanism of Tanshinone IIA (25, 50, 75 mg/kg/d) on CCL2-induced learning memory and cognitive impairment in rats, we performed the Morris water maze (MWM) and novel object recognition tests (NORT) on the rats. The results showed that Tanshinone IIA significantly alleviated CCL2-induced learning memory and cognitive dysfunction. Further studies on the hippocampal tissue of the rats revealed that Tanshinone IIA treatment significantly increased the activity of SOD and GSH-Px while the level of MDA decreased compared to the model group. Additionally, the relative expression of apoptosis-associated genes caspase-3, caspase-8, and caspase-9 and inflammation-associated genes IL-1 and IL-6 in Tanshinone IIA-treated rats was lower than that in model rats. Finally, we confirmed hippocampal neuron loss and apoptosis by Nissl staining and TdT-mediated dUTP Nick end labeling (TUNEL). Taken together, these data imply that Tanshinone IIA can ameliorate CCL2-induced learning memory and cognitive impairment by impacting oxidative stress, inflammation, and apoptosis. Tanshinone IIA may be a potential therapeutic agent for the treatment of HAND.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7060416PMC
http://dx.doi.org/10.1155/2020/2702175DOI Listing

Publication Analysis

Top Keywords

tanshinone iia
24
impairment rats
12
cognitive impairment
12
ccl2-induced learning
12
learning memory
12
memory cognitive
12
potential therapeutic
8
hiv-associated neurocognitive
8
neurocognitive disorder
8
cognitive dysfunction
8

Similar Publications

Biomimetic metal-phenolic nanocarrier for co-delivery of multiple phytomedical bioactive components for anti-atherosclerotic therapy.

Int J Pharm

January 2025

School of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510515 China; Guangdong Provincial Key Laboratory of Chinese Medicine Pharmaceutics, Southern Medical University, Guangzhou 510515 China; Guangdong Basic Research Center of Excellence for Integrated Traditional and Western Medicine for Qingzhi Diseases, Guangzhou 510515 China. Electronic address:

Atherosclerosis, a major cause of cardiovascular diseases, involves complex pathophysiological processes. The co-delivery of multiple bioactive components derived from phytomedicine to atherosclerotic plaque is challenging, especially for those with varied solubilities. This study introduces a novel metal-phenolic network-based core-shell recombinant high-density lipoprotein nanocarrier (SSPH-MPN@rHDL) for co-delivering multiple bioactive components from Salvia miltiorrhiza and Carthamus tinctorius, including salvianic acid A (SAA), salvianolic acid B (SAB), protocatechuic aldehyde (PCA), hydroxysafflor yellow A (HSYA), and tanshinone IIA (TS-IIA).

View Article and Find Full Text PDF

Fetal growth restriction (FGR) is characterized by the inability of the fetus to achieve its growth potential due to pathological factors, most commonly impaired placental trophoblast cell function. Currently, effective prevention and treatment methods of FGR are limited. We aimed to explore the pathogenesis of FGR and provide potential strategies for mitigating its occurrence.

View Article and Find Full Text PDF

[Retracted] Tan IIA inhibits H1299 cell viability through the MDM4‑IAP3 signaling pathway.

Mol Med Rep

March 2025

Department of Thoracic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.

Following the publication of the above paper, it was drawn to the Editors' attention by a concerned reader that certain of the western blotting data shown in Fig. 1C and D on p. 2386 were strikingly similar to data appearing in different form in a pair of other articles written by different authors at a different research institute that had already been published elsewhere prior to the submission of this paper to .

View Article and Find Full Text PDF

Carnosol (CO) and carnosic acid (CA) are pharmaceutically important diterpenes predominantly produced in members of Lamiaceae, Salvia officinalis (garden sage), Salvia fruticosa and Rosmarinus officinalis. Nevertheless, availability of these compounds in plant system is very low. In an effort to improve the in planta content of these diterpenes in garden sage, SmERF6 (Salvia miltiorrhiza Ethylene Responsive Factor 6) transcription factor was expressed heterologously.

View Article and Find Full Text PDF

Transcription factors play a crucial role in the biosynthesis of tanshinones, which are significant secondary metabolites derived from Salvia miltiorrhiza, commonly known as Danshen. These compounds have extensive pharmacological properties, including anti-inflammatory and cardioprotective effects. This review delves into the roles of various transcription factor families, such as APETALA2/ethylene response factor, basic helix-loop-helix, myeloblastosis, basic leucine zipper, and WRKY domain-binding protein, in regulating the biosynthetic pathways of tanshinones.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!