Phenotypic plasticity can occur across generations (transgenerational plasticity) when environments experienced by the previous generations influenced offspring phenotype. The evolutionary importance of transgenerational plasticity, especially regarding within-generational plasticity, is a currently hot topic in the plasticity framework. How long an environmental effect can persist across generations and whether multigenerational effects are cumulative are primordial-for the evolutionary significance of transgenerational plasticity-but still unresolved questions. In this study, we investigated how the grand-parental, parental and offspring exposures to predation cues shape the predator-induced defences of offspring in the snail. We expected that the offspring phenotypes result from a three-way interaction among grand-parental, parental and offspring environments. We exposed three generations of snails without and with predator cues according to a full factorial design and measured offspring inducible defences. We found that both grand-parental and parental exposures to predator cues impacted offspring antipredator defences, but their effects were not cumulative and depended on the defences considered. We also highlighted that the grand-parental environment did alter reaction norms of offspring shell thickness, demonstrating an interaction between the grand-parental transgenerational plasticity and the within-generational plasticity. We concluded that the effects of multigenerational exposure to predator cues resulted on complex offspring phenotypic patterns which are difficult to relate to adaptive antipredator advantages.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7069331PMC
http://dx.doi.org/10.1002/ece3.6046DOI Listing

Publication Analysis

Top Keywords

transgenerational plasticity
16
grand-parental parental
16
predator cues
12
offspring
9
inducible defences
8
plasticity within-generational
8
within-generational plasticity
8
effects cumulative
8
parental offspring
8
interaction grand-parental
8

Similar Publications

Global oceans are warming and acidifying because of increasing greenhouse gas emissions that are anticipated to have cascading impacts on marine ecosystems and organisms, especially those essential for biodiversity and food security. Despite this concern, there remains some skepticism about the reproducibility and reliability of research done to predict future climate change impacts on marine organisms. Here, we present meta-analyses of over two decades of research on the climate change impacts on an ecologically and economically valuable Sydney rock oyster, .

View Article and Find Full Text PDF

Integrating social learning, social networks, and non-parental transgenerational plasticity.

Trends Ecol Evol

January 2025

Department of Environmental Science and Policy, University of California, One Shields Ave, Davis, CA 95616, USA.

Transgenerational plasticity (TGP) has largely focused on how parental exposure to ecological conditions shapes the phenotypes of future generations. However, organisms acquire information about their ecological environment via social learning, which can also shape TGP in profound ways. We demonstrate that non-parents alter how parents detect and respond to environmental cues in ways that spillover to affect offspring, non-parents influence offspring even without direct physical interactions, and parental cues received by offspring can alter the phenotypes of other juveniles.

View Article and Find Full Text PDF

Transgenerational Plasticity Enhances the Tolerance of Duckweed () to Stress from Exudates of .

Int J Mol Sci

December 2024

Ministry of Education Key Laboratory for Transboundary Ecosecurity of Southwest China, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology, Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming 650504, China.

Transgenerational plasticity (TGP) refers to the influence of ancestral environmental signals on offspring's traits across generations. While evidence of TGP in plants is growing, its role in plant adaptation over successive generations remains unclear, particularly in floating plants facing fluctuating environments. Duckweed (), a common ecological remediation material, often coexists with the harmful bloom-forming cyanobacterium , which releases a highly toxic exudate mixture (MaE) during its growth.

View Article and Find Full Text PDF

Immunity priming and biostimulation by airborne nonanal increase yield of field-grown common bean plants.

Front Plant Sci

November 2024

Departamento de Ingeniería Genética, Laboratorio de Ecología de Plantas, Centro de Investigación y de Estudios Avanzados (CINVESTAV) - Unidad Irapuato, Irapuato, Mexico.

Introduction: Stress-induced volatile organic compounds (VOCs) that induce plant immunity bear potential for biocontrol. Here, we explore the potential of nonanal to enhance the seed yield of common bean () under open field conditions that are realistic for smallholder farmers.

Methods And Results: Using plastic cups with a nonanal-containing lanolin paste as low-cost dispensers, we observed that exposure of Flor de Junio Marcela (FJM) plants over 48h to airborne nonanal was followed by a 3-fold higher expression of pathogenesis-related (PR) genes PR1 and PR4.

View Article and Find Full Text PDF

Sex-specific neurotoxicity and transgenerational effects of an emerging pollutant, tris(1,3-dichloro-2-propyl)phosphate (TDCIPP).

Sci Total Environ

December 2024

State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, China; Swire Institute of Marine Science, School of Biological Sciences, The University of Hong Kong, Pok Fu Lam, Hong Kong, China. Electronic address:

The growing production and usage of flame retardants (FRs) results in their extensive environmental distribution, potentially posing a threat on both ecological and human health. Tris(1,3-dichloro-2-propyl)phosphate (TDCIPP), a commonly used FR, is commonly found in aquatic ecosystems, and aquatic organisms, including fish, may be exposed to TDCIPP during specific stages of their life cycles, or across generations. Here, we aim to identify and compare the neurotoxic effects of TDCIPP on the brains of female and male adult marine medaka (Oryzias melastigma) across three generations (F0 to F3).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!