Cancer is a disease caused by a process that drives the transformation of normal cells into malignant cells. The late diagnosis of cancer has a negative impact on the health care system due to high treatment cost and decreased chances of favorable prognosis. Here, we aimed to identify orofacial conditions that can serve as potential risk markers for cancers by performing a phenome-wide scan (PheWAS). From a pool of 6,100 individuals, both genetic and epidemiological data of 1,671 individuals were selected: 350 because they were previously diagnosed with cancer and 1,321 to match to those individuals that had cancer, based on age, sex, and ethnicity serving as a comparison group. Results of this study showed that when analyzing the individuals affected by cancer separately, tooth loss/edentulism is associated with SNPs in AXIN2 (rs11867417 p = 0.02 and rs2240308 p = 0.02), and leukoplakia of oral mucosa is associated with both AXIN2 (rs2240308 p = 0.03) and RHEB (rs2374261 p = 0.03). These phenotypes did not show the same trends in patients that were not diagnosed with cancer, allowing for the conclusion that these phenotypes are unique to cases with higher cancer risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7078198 | PMC |
http://dx.doi.org/10.1038/s41598-020-61654-3 | DOI Listing |
BMC Med
January 2025
Department of Cardiothoracic Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
Background: Current research underscores the need to better understand the pathogenic mechanisms and treatment strategies for idiopathic pulmonary fibrosis (IPF). This study aimed to identify key targets involved in the progression of IPF.
Methods: We employed Mendelian randomization (MR) with three genome-wide association studies and four quantitative trait loci datasets to identify key driver genes for IPF.
HGG Adv
January 2025
Division of Epidemiology and Clinical Research, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA. Electronic address:
The aim of this study was to scan phenotypes in adulthood associated with polygenic risk scores (PRS) for childhood cancers with well-articulated genetic architectures-acute lymphoblastic leukemia (ALL), Ewing sarcoma, and neuroblastoma-to examine genetic pleiotropy. Furthermore, we aimed to determine which SNPs could drive associations. Per-SNP summary statistics were extracted for PRS calculation.
View Article and Find Full Text PDFNat Commun
July 2024
Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, Cambridge Biomedical Campus, University of Cambridge, Cambridge, CB2 0AW, UK.
Phenome-wide association studies (PheWAS) facilitate the discovery of associations between a single genetic variant with multiple phenotypes. For variants which impact a specific protein, this can help identify additional therapeutic indications or on-target side effects of intervening on that protein. However, PheWAS is restricted by an inability to distinguish confounding due to linkage disequilibrium (LD) from true pleiotropy.
View Article and Find Full Text PDFTransl Gastroenterol Hepatol
January 2024
Vanderbilt University Medical Center, Vanderbilt Institute for Clinical and Translational Research, Nashville, TN, USA.
Background: The World Health Organization (WHO)'s Essential Medicines List (EML) plays an important role in advocating for access to key treatments for conditions affecting people in all geographic settings. We applied our established drug repurposing methods to one EML agent, N-acetylcysteine (NAC), to identify additional uses of relevance to the global health community beyond its existing EML indication (acetaminophen toxicity).
Methods: We undertook a phenome-wide association study (PheWAS) of a variant in the glutathione synthetase () gene in approximately 35,000 patients to explore novel indications for use of NAC, which targets glutathione.
Genome Med
November 2023
Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.
Background: Common and rare variants contribute to the etiology of complex traits. However, the extent to which the phenotypic effects of common and rare variants involve shared molecular mediators remains poorly understood. The question is essential to the basic and translational goals of the science of genomics, with critical basic-science, methodological, and clinical consequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!