constitutes a popular eukaryal model for research on mitochondrial physiology. Being Crabtree-positive, this yeast has evolved the ability to ferment glucose to ethanol and respire ethanol once glucose is consumed. Its transition phase from fermentative to respiratory metabolism, known as the diauxic shift, is reflected by dramatic rearrangements of mitochondrial function and structure. To date, the metabolic adaptations that occur during the diauxic shift have not been fully characterized at the organelle level. In this study, the absolute proteome of mitochondria was quantified alongside precise parametrization of biophysical properties associated with the mitochondrial network using state-of-the-art optical-imaging techniques. This allowed the determination of absolute protein abundances at a subcellular level. By tracking the transformation of mitochondrial mass and volume, alongside changes in the absolute mitochondrial proteome allocation, we could quantify how mitochondria balance their dual role as a biosynthetic hub as well as a center for cellular respiration. Furthermore, our findings suggest that in the transition from a fermentative to a respiratory metabolism, the diauxic shift represents the stage where major structural and functional reorganizations in mitochondrial metabolism occur. This metabolic transition, initiated at the mitochondria level, is then extended to the rest of the yeast cell.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7132131 | PMC |
http://dx.doi.org/10.1073/pnas.1918216117 | DOI Listing |
mSphere
October 2024
Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, USA.
is one of the most well-studied model organisms used in the scientific community. Its ease of manipulation, accessible growth conditions, short life cycle, and conserved eukaryotic metabolic pathways make it a useful model organism. Consequently, yeast has been used to investigate a myriad of phenomena, from microbial to human studies.
View Article and Find Full Text PDFMetab Eng Commun
December 2024
Goethe University Frankfurt, Faculty of Biological Sciences, Institute of Molecular Biosciences, Max-von-Laue Straße 9, 60438, Frankfurt am Main, Germany.
Enhancing the supply of the redox cofactor NADPH in metabolically engineered cells is a critical target for optimizing the synthesis of many product classes, such as fatty acids or terpenoids. In , several successful approaches have been developed in different experimental contexts. However, their systematic comparison has not been reported.
View Article and Find Full Text PDFNPJ Syst Biol Appl
May 2024
Technical Biochemistry, TU Dortmund University, Emil-Figge-Straße 66, 44227, Dortmund, Germany.
Yeast metabolism can be engineered to produce xenobiotic compounds, such as cannabinoids, the principal isoprenoids of the plant Cannabis sativa, through heterologous metabolic pathways. However, yeast cell factories continue to have low cannabinoid production. This study employed an integrated omics approach to investigate the physiological effects of cannabidiol on S.
View Article and Find Full Text PDFACS Synth Biol
May 2024
Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois Urbana-Champaign, Urbana, Illinois 61801-3028, United States.
Microbial metabolism is a fundamental cellular process that involves many biochemical events and is distinguished by its emergent properties. While the molecular details of individual reactions have been increasingly elucidated, it is not well understood how these reactions are quantitatively orchestrated to produce collective cellular behaviors. Here we developed a coarse-grained, systems, and dynamic mathematical framework, which integrates metabolic reactions with signal transduction and gene regulation to dissect the emergent metabolic traits of .
View Article and Find Full Text PDFFront Biosci (Elite Ed)
January 2024
Laboratory of Cell Signalling, Institute of Microbiology of the Czech Academy of Sciences, 14200 Prague, Czech Republic.
Background: Xrn1 exoribonuclease is the major mRNA degradation enzyme in In exponentially growing cells, Xrn1 is localised in the yeast cells and directs the degradation of mRNA molecules. Xrn1 is gradually deposited and presumably inactivated in the processing bodies (P-bodies) as the yeast population ages. Xrn1 can also localise to the membrane compartment of the arginine permease Can1/eisosome compartment at the yeast plasma membrane.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!