Measurement of the individual enzymes involved in mitochondrial oxidative phosphorylation (OXPHOS) forms a key part of diagnostic investigations in patients with suspected mitochondrial disease, and can provide crucial information on mitochondrial OXPHOS function in a variety of cells and tissues that are applicable to many research investigations. In this chapter, we present methods for analysis of mitochondrial respiratory chain enzymes in cells and tissues based on assays performed in two geographically separate diagnostic referral centers, as part of clinical diagnostic investigations. Techniques for sample preparation from cells and tissues, and spectrophotometric assays for measurement of the activities of OXPHOS complexes I-V, the combined activity of complexes II+III, and the mitochondrial matrix enzyme citrate synthase, are provided. The activities of mitochondrial respiratory chain enzymes are often expressed relative to citrate synthase activity, since these ratios may be more robust in accounting for variability that may arise due to tissue quality, handling and storage, cell growth conditions, or any mitochondrial proliferation that may be present in tissues from patients with mitochondrial disease. Considerations for adaption of these techniques to other cells, tissues, and organisms are presented, as well as comparisons to alternate methods for analysis of respiratory chain function. In this context, a quantitative immunofluorescence protocol is also provided that is suitable for measurement of the amount of multiple respiratory chain complexes in small diagnostic tissue samples. The analysis and interpretation of OXPHOS enzyme activities are then placed in the context of mitochondrial disease tissue pathology and diagnosis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/bs.mcb.2019.11.007 | DOI Listing |
J Mol Cell Cardiol Plus
September 2024
Early Origins of Adult Health Research Group, Health and Biomedical Innovation, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5001, Australia.
The adult mammalian heart is unable to undergo cardiac repair, limiting potential treatment options after cardiac damage. However, the fetal heart is capable of cardiac repair. In preparation for birth, cardiomyocytes (CMs) undergo major maturational changes that include exit from the cell cycle, hypertrophic growth, and mitochondrial maturation.
View Article and Find Full Text PDFDynein-1 is a microtubule motor responsible for the transport of cytoplasmic cargoes. Activation of motility requires it first overcome an autoinhibited state prior to its assembly with dynactin and a cargo adaptor. Studies suggest that Lis1 may relieve dynein's autoinhibited state.
View Article and Find Full Text PDFUnlabelled: The intestinal diarrheal pathogen colonizes the host terminal ileum, a microaerophilic, glucose-poor, nitrate-rich environment. In this environment, respires nitrate and increases transport and utilization of alternative carbon sources via the cAMP receptor protein (CRP), a transcription factor that is active during glucose scarcity. Here we show that nitrate respiration in aerated cultures is under control of CRP and, therefore, glucose availability.
View Article and Find Full Text PDFCytoplasmic dynein-1 (dynein) is the primary motor for the retrograde transport of intracellular cargoes along microtubules. The activation of the dynein transport machinery requires the opening of its autoinhibited Phi conformation by Lis1 and Nde1/Ndel1, but the underlying mechanism remains unclear. Using biochemical reconstitution and cryo-electron microscopy, we show that Nde1 significantly enhances Lis1 binding to autoinhibited dynein and facilitates the opening of Phi.
View Article and Find Full Text PDFbioRxiv
December 2024
Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, 06511, USA.
Cytoplasmic dynein-1, a microtubule-based motor protein, requires dynactin and an adaptor to form the processive dynein-dynactin-adaptor (DDA) complex. The role of microtubules in DDA assembly has been elusive. Here, we reveal detailed structural insights into microtubule-mediated DDA assembly using cryo-electron microscopy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!