Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dose selection is one of the most difficult and crucial decisions to make during drug development. As a consequence, the dose-finding trial is a major milestone in the drug development plan and should be properly designed. This article will review the most recent methodologies for optimizing the design of dose-finding studies: all of them are based on the modeling of the dose-response curve, which is now the gold standard approach for analyzing dose-finding studies instead of the traditional ANOVA/multiple testing approach. We will address the optimization of both fixed and adaptive designs and briefly outline new methodologies currently under investigation, based on utility functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/10543406.2020.1730874 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!