Respiratory mechanics studies are associated with fundamental research and translational studies; the present work thus investigates this particular matter. Our current research describes differences and similarities between two different ways of administrating a very prevalent bronchoconstrictor (methacholine) in an aging process scenario. The core issue of our work is related with troubles we find with the bolus protocol and the application of the mathematical model used to assess the respiratory mechanics. Our findings reveal the continuous infusion as an alternative to these problems and we hope to provide the proper foundations to a more reliable assessment in the respiratory field.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7221486PMC
http://dx.doi.org/10.1177/1535370220912393DOI Listing

Publication Analysis

Top Keywords

respiratory mechanics
12
continuous infusion
8
respiratory
4
mechanics evaluation
4
evaluation mice
4
mice submitted
4
submitted intravenous
4
intravenous methacholine
4
methacholine bolus
4
bolus continuous
4

Similar Publications

Purpose: Residual neuromuscular blockade can impair postoperative respiratory mechanics, promoting hypoxemia and pulmonary complications. Sugammadex, with its unique mechanism of action, may offer a more effective reversal of neuromuscular blockade and respiratory function than neostigmine. We sought to test the primary hypothesis that children undergoing noncardiac surgery exhibit better initial recovery oxygenation when administered sugammadex than those administered neostigmine.

View Article and Find Full Text PDF

In this paper, we present a new computational framework for the simulation of airway resistance, the fraction of exhaled nitric oxide, and the diffusion capacity for nitric oxide in healthy and unhealthy lungs. Our approach is firstly based on a realistic representation of the geometry of healthy lungs as a function of body mass, which compares well with data from the literature, particularly in terms of lung volume and alveolar surface area. The original way in which this geometry is created, including an individual definition of the airways in the first seven generations of the lungs, makes it possible to consider the heterogeneous nature of the lungs in terms of perfusion and ventilation.

View Article and Find Full Text PDF

Not too much, not too little. Titrating flow rate to minimise inspiratory effort during helmet CPAP: A bench study.

Pulmonology

December 2025

Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei tintori, Monza, Italy.

Background: Non-invasive helmet respiratory support is suitable for several clinical conditions. Continuous-flow helmet CPAP systems equipped with HEPA filters have become popular during the recent Coronavirus pandemic. However, HEPA filters generate an overpressure above the set PEEP.

View Article and Find Full Text PDF

Shaping epithelial tissues by stem cell mechanics in development and cancer.

Nat Rev Mol Cell Biol

January 2025

Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.

Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function.

View Article and Find Full Text PDF

The efficient isolation and molecular analysis of circulating tumor cells (CTCs) from whole blood at single-cell level are crucial for understanding tumor metastasis and developing personalized treatments. The viability of isolated cells is the key prerequisite for the downstream molecular analysis, especially for RNA sequencing. This study develops a laser-induced forward transfer -assisted microfiltration system (LIFT-AMFS) for high-viability CTC enrichment and retrieval from whole blood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!