This study was designed to verify the effectiveness of smart gardens by improving indoor air quality (IAQ) through the installation of an indoor garden with sensor-based Internet-of-Things (IoT) technology that identifies pollutants such as particulate matter. In addition, the study aims to introduce indoor gardens for customized indoor air cleaning using the data and IoT technology. New apartments completed in 2016 were selected and divided into four households with indoor gardens installed and four households without indoor gardens. Real-time data and data on PM, CO, temperature, and humidity were collected through an IoT-based IAQ monitoring system. In addition, in order to examine the effects on the health of occupants, the results were analyzed based on epidemiological data, prevalence data, current maintenance, and recommendation criteria, and were presented and evaluated as indices. The indices were classified into a comfort index, which reflects the temperature and humidity, an IAQ index, which reflects PM and CO, and an IAQ composite index. The IAQ index was divided into five grades from "good" to "hazardous". Using a scale of 1 to 100 points, it was determined as follows: "good (0-20)", "moderate (21-40)", "unhealthy for sensitive group (41-60)", "bad (61-80)", "hazardous (81-100)". It showed an increase in the "good" section after installing the indoor garden, and the "bad" section decreased. Additionally, the comfort index was classified into five grades from "very comfortable" to "very uncomfortable". In the comfort index, the "uncomfortable" section decreased, and the "comfortable" section increased after the indoor garden was installed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142759 | PMC |
http://dx.doi.org/10.3390/ijerph17061867 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!