In the optimization process of nucleic acid aptamers, increased affinity and/or activity are generally searched by exploring structural analogues of the lead compound. In many cases, promising results have been obtained by dimerization of the starting aptamer. Here we studied a focused set of covalent dimers of the G-quadruplex (G4) forming anti-Vascular Endothelial Growth Factor (VEGF) V7t1 aptamer with the aim of identifying derivatives with improved properties. In the design of these covalent dimers, connecting linkers of different chemical nature, maintaining the same polarity along the strand or inverting it, have been introduced. These dimeric aptamers have been investigated using several biophysical techniques to disclose the conformational behavior, molecularity and thermal stability of the structures formed in different buffers. This in-depth biophysical characterization revealed the formation of stable G4 structures, however in some cases accompanied by alternative tridimensional arrangements. When tested for their VEGF binding and antiproliferative activity in comparison with V7t1, these covalent dimers showed slightly lower binding ability to the target protein but similar if not slightly higher antiproliferative activity on human breast adenocarcinoma MCF-7 cells. These results provide useful information for the design of improved dimeric aptamers based on further optimization of the linker joining the two consecutive V7t1 sequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7139925PMC
http://dx.doi.org/10.3390/ijms21061963DOI Listing

Publication Analysis

Top Keywords

covalent dimers
12
v7t1 aptamer
8
dimeric aptamers
8
antiproliferative activity
8
tuning polymorphism
4
polymorphism anti-vegf
4
anti-vegf g-rich
4
v7t1
4
g-rich v7t1
4
covalent
4

Similar Publications

Electrochemically grown copper nanoclusters (CuNCs: < 3 nm) from single-atom catalysts have recently attracted intensive attention as electrocatalysts for CO2 and CO reduction reaction (CO2RR/CORR) because they exhibit distinct product selectivity compared with conventional Cu nanoparticles (typically larger than 10 nm). Herein, we conducted a detailed investigation into the size dependence of CuNCs on selectivity for multicarbon (C2+) production in CORR. These nanoclusters were electrochemically grown from single Cu atoms dispersed on covalent triazine frameworks (Cu-CTFs).

View Article and Find Full Text PDF

Enzymes are attractive as catalysts due to their specificity and biocompatibility; however, their use in industrial and biomedical applications is limited by stability. Here, we present a facile approach for enzyme immobilization within "all-enzyme" hydrogels by forming photochemical covalent cross-links between the enzyme glucose oxidase. We demonstrate that the mechanical properties of the enzyme hydrogel can be tuned with enzyme concentration and the data suggests that the dimeric nature of glucose oxidase results in unusual gel formation behavior which suggests a degree of forced induced dimer dissociation and unfolding.

View Article and Find Full Text PDF

Three new hexagonal perovskites with CsMMRhCl (M = Na, Ag; M = Mn, Fe) stoichiometry have been synthesized from solution precipitation reactions. These air-stable compounds crystallize as triply cation-ordered variants of the 6H perovskite structure. This structure contains octahedra that share a common face to form MRhCl dimers that are arranged on a two-dimensional triangular network.

View Article and Find Full Text PDF

Completely Multipolar Model for Many-Body Water-Ion and Ion-Ion Interactions.

J Phys Chem Lett

January 2025

Kenneth S. Pitzer Theory Center and Department of Chemistry, University of California, Berkeley, California 94720, United States.

This work constructs an advanced force field, the Completely Multipolar Model (CMM), to quantitatively reproduce each term of an energy decomposition analysis (EDA) for aqueous solvated alkali metal cations and halide anions and their ion pairings. We find that all individual EDA terms remain well-approximated in the CMM for ion-water and ion-ion interactions, except for polarization, which shows errors due to the partial covalency of ion interactions near their equilibrium. We quantify the onset of the dative bonding regime by examining the change in molecular polarizability and Mayer bond indices as a function of distance, showing that partial covalency manifests by breaking the symmetry of atomic polarizabilities while strongly damping them at short-range.

View Article and Find Full Text PDF

Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!