Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A growing number of devices, from car key fobs to mobile phones to WiFi-routers, are equipped with ultra-wideband radios. In the network formed by these devices, communicating modules often estimate the channel impulse response to employ a matched filter to decode transmitted data or to accurately time stamp incoming messages when estimating the time-of-flight for localization. This paper investigates how such measurements of the channel impulse response can be utilized to augment existing ultra-wideband communication and localization networks to a multi-static radar network. The approach is experimentally evaluated using off-the-shelf hardware and simple, distributed filtering, and shows that a tag-free human walking in the space equipped with ultra-wideband modules can be tracked in real time. This opens the door for various location-based smart home applications, ranging from smart audio and light systems to elderly monitoring and security systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7147715 | PMC |
http://dx.doi.org/10.3390/s20061599 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!