Effects of Ion Beam Etching on the Nanoscale Damage Precursor Evolution of Fused Silica.

Materials (Basel)

Laboratory of Science and Technology on Integrated Logistics Support, College of Intelligence Science and Technology, National University of Defense Technology, 109 Deya Road, Changsha 410073, Hunan, China.

Published: March 2020

Nanoscale laser damage precursors generated from fabrication have emerged as a new bottleneck that limits the laser damage resistance improvement of fused silica optics. In this paper, ion beam etching (IBE) technology is performed to investigate the evolutions of some nanoscale damage precursors (such as contamination and chemical structural defects) in different ion beam etched depths. Surface material structure analyses and laser damage resistance measurements are conducted. The results reveal that IBE has an evident cleaning effect on surfaces. Impurity contamination beneath the polishing redeposition layer can be mitigated through IBE. Chemical structural defects can be significantly reduced, and surface densification is weakened after IBE without damaging the precision of the fused silica surface. The photothermal absorption on the fused silica surface can be decreased by 41.2%, and the laser-induced damage threshold can be raised by 15.2% after IBE at 250 nm. This work serves as an important reference for characterizing nanoscale damage precursors and using IBE technology to increase the laser damage resistance of fused silica optics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7143300PMC
http://dx.doi.org/10.3390/ma13061294DOI Listing

Publication Analysis

Top Keywords

fused silica
20
laser damage
16
ion beam
12
nanoscale damage
12
damage precursors
12
damage resistance
12
beam etching
8
damage
8
silica optics
8
ibe technology
8

Similar Publications

Interface Acoustic Waves in 128° YX-LiNbO/SU-8/Overcoat Structures.

Micromachines (Basel)

January 2025

Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.

The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.

View Article and Find Full Text PDF

The development and validation of an accurate, selective, and eco-friendly capillary zone electrophoretic detection (CZE) method has been presented for concurrent measurement of inorganic and organic anions including chloride, sulfate, formic acid, citric acid, acetic acid, phosphate, and glutamic acid in Human Milk Oligosaccharides (HMOs) for the first time. An electrolyte composed of an aqueous solution of benzoic acid, 16.38 mM; l-histidine, 24.

View Article and Find Full Text PDF

Nonlinear Refraction and Absorption in Polymers Used for Femtosecond Direct Laser Writing.

ACS Omega

January 2025

Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brasil.

Direct laser writing (DLW) has been recognized as a unique technique for three-dimensional (3D) prototyping with resolution beyond the diffraction limit. One trend in DLW technologies is the use of polymers, given their favorable mechanical properties and optical quality, rendering them promising for the next generation of nonlinear photonic devices. However, absorptive properties that facilitate DLW processes may also hinder the performance of polymers as all-optical devices.

View Article and Find Full Text PDF

We demonstrate experimentally an efficient terahertz emitter that consists of a 20 µm thick layer of LiNbO clamped between a fused silica substrate and a Si semicone. A focused laser beam from an ultrafast optical oscillator propagates in the LiNbO layer and emits a Cherenkov cone of terahertz radiation to the Si semicone. The radiation is totally internally reflected by the semicone's convex surface and escapes the semicone through its base as a collimated beam.

View Article and Find Full Text PDF

Slip flow, a fluid flow enhanced in comparison to that calculated using continuum equations, has been reported for many nanopores, mostly those with hydrophobic surfaces. We investigated the flow of water, hexane, and methanol through hydrophilic nanopores in silica colloidal crystals. Three silica sphere sizes were used to prepare the crystals: 150 ± 30, 500 ± 40, and 1500 ± 100 nm.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!