All-atom molecular dynamics simulations are utilized to determine the properties and mechanisms of cellulose dissolution using the ionic liquid tetrabutylphosphonium chloride (TBPCl)-water mixture, from 63.1 to 100 mol % water. The hydrogen bonding between small and large cellulose bundles with 18 and 88 strands, respectively, is compared for all concentrations. The Cl, TBP, and water enable cellulose dissolution by working together to form a cooperative mechanism capable of separating the cellulose strands from the bundle. The chloride anions initiate the cellulose breakup, and water assists in delaying the cellulose strand reformation; the TBP cation then more permanently separates the cellulose strands from the bundle. The chloride anion provides a net negative pairwise energy, offsetting the net positive pairwise energy of the peeling cellulose strand. The TBP-peeling cellulose strand has a uniquely favorable and potentially net negative pairwise energy contribution in the TBPCl-water solution, which may partially explain why it is capable of dissolving cellulose at moderate temperatures and high water concentrations. The cellulose dissolution declines rapidly with increasing water concentration as hydrogen bond lifetimes of the chloride-cellulose hydroxyl hydrogens fall below the cellulose's largest intra-strand hydrogen bonding lifetime.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7183325 | PMC |
http://dx.doi.org/10.3390/polym12030627 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!