The use of wearable body sensors for health monitoring is a quickly growing field with the potential of offering a reliable means for clinical and remote health management. This includes both real-time monitoring and health trend monitoring with the aim to detect/predict health deterioration and also to act as a prevention tool. The aim of this systematic review was to provide a qualitative synthesis of studies using wearable body sensors for health monitoring. The synthesis and analysis have pointed out a number of shortcomings in prior research. Major shortcomings are demonstrated by the majority of the studies adopting an observational research design, too small sample sizes, poorly presented, and/or non-representative participant demographics (i.e., age, gender, patient/healthy). These aspects need to be considered in future research work.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7085653 | PMC |
http://dx.doi.org/10.3390/s20051502 | DOI Listing |
Chronobiol Int
January 2025
Google LLC, San Francisco, California, USA.
Circadian rhythms are governed by a biological clock, and are known to occur in a variety of physiological processes. We report results on the circadian rhythm of heart rate observed using a wrist-worn wearable device (Fitbit), consisting of over 17,000 individuals over the course of 30 days. We obtain an underlying heart rate circadian rhythm from the time series heart rate by modeling the circadian rhythm as a sum over the first two Fourier harmonics.
View Article and Find Full Text PDFACS Mater Au
January 2025
Department of Electrical and Electronic Engineering, Kyushu Institute of Technology, 1-1 Sensuicho, Tobataku, Kitakyushu, Fukuoka 804-8550, Japan.
Ionic gels (IGs), ionic liquids (ILs) dispersed in polymers, exhibit extremely low vapor pressure, electrochemical and thermal stability, and excellent mechanical characteristics; therefore, they are used for fabricating stretchable sensors, electrochemical transistors, and energy storage devices. Although such characteristics are promising for flexible and stretchable electronics, the mechanical stress-induced ruptured covalent bonds forming polymer networks cannot recover owing to the irreversible interaction between the bonds. Physical cross-linking via noncovalent bonds enables the interaction of polymers and ILs to form supramolecular IGs (SIGs), which exhibit favorable characteristics for wearable devices that conventional IGs with noncovalent bonds cannot achieve.
View Article and Find Full Text PDFSleep Biol Rhythms
January 2025
Laboratory of Animal Physiology, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-Ku, Kawasaki, Kanagawa 214-8571 Japan.
The ovarian steroid hormones, estrogen and progesterone, the levels of which fluctuate dynamically with the estrous cycle, alter circadian behavioral rhythms in mammals. However, it remains unclear whether the sleep-wake rhythm fluctuates with the menstrual cycle in humans. To ascertain the relationship between the menstrual cycle and sleep-wake rhythms, we evaluated the objective and long-term sleep-wake rhythms of ten healthy women using a recently developed wearable device.
View Article and Find Full Text PDFACS Nano
January 2025
CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei, Anhui 230027, PR China.
Flexible on-skin electronics present tremendous popularity in intelligent electronic skins (e-skins), healthcare monitoring, and human-machine interfaces. However, the reported e-skins can hardly provide high permeability, good stretchability, and large sensitivity and are limited in long-term stability and efficient recyclability when worn on the human body. Herein, inspired from the human skin, a permeable, stretchable, and recyclable cellulose aerogel-based electronic system is developed by sandwiching a screen-printed silver sensing layer between a biocompatible CNF/HPC/PVA (cellulose nanofiber/hydroxypropyl cellulose/poly(vinyl alcohol)) aerogel hypodermis layer and a permeable polyurethane layer as the epidermis layer.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
State Key Lab for Hubei New Textile Materials and Advanced Processing Technology, College of Materials Science & Engineering, College of Textile Science & Engineering, Wuhan Textile University, 430200 Wuhan, China. Electronic address:
Cellulose nanofibers (CNFs) have gained increasing attention due to their robust mechanical properties, favorable biocompatibility, and facile surface modification. However, green and recyclable CNF production remains challenging. Herein, a green, low-cost and room-temperature strategy was developed to exfoliate CNFs using deep eutectic solvents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!