A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies.

Micromachines (Basel)

School of Mechanical Engineering and Department of Integrative Biomedical Science and Engineering, Graduate School, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea.

Published: March 2020

A nut-and-bolt microfluidic system was previously developed for a point-of-care (POC) human immunodeficiency virus (HIV) test and was able to acquire images of CD4 (cluster of differentiation 4) + T-lymphocytes in a sample drop of blood followed by image analysis. However, as the system was not fully integrated with a sample reaction module, the mixing of the sample with the antibody reagent was carried out manually. To achieve a rapid reaction with a reduced amount of costly reagent in a POC diagnostic system, an efficient sample mixing function must be implemented. Here, we propose a novel method to drastically accelerate the process of sample mixing and increase the reaction rate in the nut-and-bolt microfluidic system, where the sample is mixed with the reagent in a reaction chamber formed by connecting a nut with a bolt-like sample cartridge. The mixing is facilitated by rotating the sample cartridge bidirectionally using a DC motor, which agitates the sample in a chaotic manner. A microbead complex formed by the avidin-biotin interaction was used as a model reaction system to examine the feasibility of our mixing module. We found that the reaction time for the avidin-biotin binding by mixing was 7.5 times shorter than in the incubation method, achieving a reaction efficiency of over 95%. The performance of our mixing system was further demonstrated by measuring the concentration of CD4 cells labeled with a fluorescent antibody in the blood sample. The antigen-antibody reaction mixing was faster by a factor of 20, reaching a reaction efficiency comparable to the conventional incubation method.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7142707PMC
http://dx.doi.org/10.3390/mi11030280DOI Listing

Publication Analysis

Top Keywords

nut-and-bolt microfluidic
12
sample
10
mixing
9
reaction
9
mixing system
8
microfluidic system
8
sample mixing
8
sample cartridge
8
incubation method
8
reaction efficiency
8

Similar Publications

A Nut-and-Bolt Microfluidic Mixing System for the Rapid Labeling of Immune Cells with Antibodies.

Micromachines (Basel)

March 2020

School of Mechanical Engineering and Department of Integrative Biomedical Science and Engineering, Graduate School, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea.

A nut-and-bolt microfluidic system was previously developed for a point-of-care (POC) human immunodeficiency virus (HIV) test and was able to acquire images of CD4 (cluster of differentiation 4) + T-lymphocytes in a sample drop of blood followed by image analysis. However, as the system was not fully integrated with a sample reaction module, the mixing of the sample with the antibody reagent was carried out manually. To achieve a rapid reaction with a reduced amount of costly reagent in a POC diagnostic system, an efficient sample mixing function must be implemented.

View Article and Find Full Text PDF

Nut and Bolt Microfluidics with Helical Minichannel for Counting CD4+ T-Cells.

Bioengineering (Basel)

March 2019

Department of Mechanical Engineering, Graduate School, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul 02707, Korea.

In this study, we developed the prototype of an optical imaging-based point-of-care (POC) device for monitoring human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) progression that can detect CD4+ T-lymphocytes in human blood. The proposed portable cell-counting system, Helios CD4 Analyzer (Helios), can acquire sample images and analyze the cells automatically using a simple fluorescence imaging module and sample cartridge with a three-dimensional (3D) helical minichannel. The helical minichannel formed on the cylindrical surface enables the sample cartridge to hold a cell suspension present in a fixed sample volume for absolute counting of the cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!