In this work, the fouling resistance of TFC (thin film composite) nanofiltration membranes have been enhanced using an electrostatically coupled SiO (silica dioxide) nanoparticles/poly(L-DOPA) (3-(3,4-dihydroxyphenyl)-l-alanine) antifouling coating. SiO nanoparticles were synthesized in different size ranges and combined with L-DOPA; and then coated as an anti-fouling layer on the membrane surface by recirculated deposition. Membranes were coated with S-NP (silica nanoparticles) in small (19.8 nm), medium (31.6 nm) and large (110.1 nm) sizes. The zwitterionic compound L-DOPA in the form of self-polymerized poly(L-DOPA) (PDOPA) helped with the attachment of the S-NP to the membrane surface. It was confirmed by AFM (atomic force microscopy) measurement that coating of membranes led to an increase in hydrophilicity and reduction in surface roughness, which in turn led to a 60% reduction in the adhesion force of the foulant on the membrane as compared to the neat membrane. The modified membranes experienced almost no flux decline during the filtration experimental period, whereas the unmodified membrane showed a sharp flux decline. The best coating conditions of silica nanoparticles resulting in enhanced anti-fouling properties were identified. The biofouling film formation on the membranes was evaluated quantitatively using the flow cytometry method. The results indicated that the modified membranes had 50% lower microbial population growth in terms of total event count compared to the neat membrane. Overall, the experimental results have confirmed that the coating of electrostatically coupled SiO nanoparticles and PDOPA (S-NP/PDOPA) on TFC-NF (nanofiltration) membrane surfaces is effective in improving the fouling resistance of the membranes. This result has positive implications for reducing membrane fouling in desalination and industrial wastewater treatment applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1361-6528/ab8085 | DOI Listing |
In this paper, poly(diallyldimethylammonium chloride)(PDDA)/poly(sodium styrene sulfonate)(PSS) nanomembranes were deposited on the surface of long-period fiber gratings (LPFG) using the electrostatic layer-by-layer (LBL) assembly method, and the effect of NaCl on the modulation of LPFG double peaks by PDDA/PSS nanomembranes was investigated. The principle behind the emergence of double peaks was first explored using coupled mode theory, revealing that changes in the mode effective refractive index(RI) occur as the number of nanomembrane layers increases. The experimental results showed that under the conditions of PDDA with NaCl/PSS without NaCl and PDDA without NaCl/PSS with NaCl, double peaks do not appear in the spectra of LPFG as the number of thin film layers increases.
View Article and Find Full Text PDFAnal Methods
January 2025
Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
Adenosine triphosphate (ATP) is crucial for cellular activity. The need for ATP detection in the field of biomedicine is rapidly increasing. Several biosensor-based approaches have been developed as a result of the growing demand for ATP detection.
View Article and Find Full Text PDFFood Chem
January 2025
China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing, Jiangsu University, Zhenjiang 212013, China. Electronic address:
Flexible surface-enhanced Raman scattering (SERS) sensors offer a promising solution for the rapid in situ monitoring of food safety. The sensor's capability to furnish quantitative detection and retain recyclability is crucial in practical applications. This study proposes a self-cleaning flexible SERS sensor, augmented with an intelligent algorithm designed for expeditious in situ and non-destructive thiram detection on apples.
View Article and Find Full Text PDFJ Environ Manage
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, China.
The degradation of antibiotic wastewater by low-temperature plasma and the removal of excess nitrogen by biological denitrification with Pseudomonas stutzeri (P. stutzeri) reducing secondary pollution has rarely been reported. In this study, iron and phenolic resin doped carbon-based porous nanofiber membranes are prepared (named RFe-CNF) by electrostatic spinning technique, where the optimization of structure and composition endows low-temperature plasma system better catalyst performance than that of without catalyst (a 58% increase).
View Article and Find Full Text PDFWater Res
January 2025
State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China; State Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution (Chengdu University of Technology), 1#, Dongsanlu, Erxianqiao, Chengdu 610059, Sichuan, PR China. Electronic address:
Electrochemical reduction technology is a promising method for addressing the persistent contamination of groundwater by chlorinated hydrocarbons. Current research shows that electrochemical reductive dechlorination primarily relies on direct electron transfer (DET) and active hydrogen (H) mediated indirect electron transfer processes, thereby achieving efficient dechlorination and detoxification. This paper explores the influence of the molecular charge structure of chlorinated hydrocarbons, including chlorolefin, chloroalkanes, chlorinated aromatic hydrocarbons, and chloro-carboxylic acid, on reductive dechlorination from the perspective of molecular electrostatic potential and local electron affinity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!