Oxidation of Alkenes by Water with H Liberation.

J Am Chem Soc

Department of Organic Chemistry, Weizmann Institute of Science, Rehovot 76100, Israel.

Published: April 2020

Oxidation by water with H liberation is highly desirable, as it can serve as an environmentally friendly way for the oxidation of organic compounds. Herein, we report the oxidation of alkenes with water as the oxidant by using a catalyst combination of a dearomatized acridine-based PNP-Ru complex and indium(III) triflate. Compared to traditional Wacker-type oxidation, this transformation avoids the use of added chemical oxidants and liberates hydrogen gas as the only byproduct.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7118709PMC
http://dx.doi.org/10.1021/jacs.0c01592DOI Listing

Publication Analysis

Top Keywords

oxidation alkenes
8
alkenes water
8
water liberation
8
oxidation
5
liberation oxidation
4
oxidation water
4
liberation highly
4
highly desirable
4
desirable serve
4
serve environmentally
4

Similar Publications

A novel class of bis-8-aryl-isoquinoline () bis-alkylamine iron complexes, Fe()(OTf) and Fe()(OTf) ( = dipyrrolidinyl or = ,'-dimethylcyclohexyl-diamine), for asymmetric oxidation reactions is reported. The scalable divergent synthesis of 8-aryl-3-formylisoquinolines (), the key intermediates in preparing these ligands, enables precise structural and electronic tuning around the metal center. The enantioselective epoxidation and hydroxy carbonylation of conjugated alkenes, mediated by the Fe() catalyst with HO as the oxidant, demonstrates the potential of these redox Fe[N] catalysts in inducing face selection in oxygen transfer transformations.

View Article and Find Full Text PDF

We synthesized ,-dimethylformamide (DMF)-stabilized manganese nanoparticles (Mn NPs) in a one-step process under air using manganese(ii) chloride as the precursor. The Mn NPs were characterized in terms of particle size, oxidation state, and local structure using annular dark-field scanning transmission electron microscopy (ADF-STEM), X-ray photoelectron spectroscopy (XPS), and X-ray absorption spectroscopy (XAS). The results indicate that Mn NPs are divalent nanosized particles with Mn-O bonds.

View Article and Find Full Text PDF

Reactivity of Anomalous Aziridines for Versatile Access to High Fsp Amine Chemical Space.

Acc Chem Res

January 2025

Department of Chemistry, University of Wisconsin, 1101 University Avenue, Madison, Wisconsin 53706, United States.

ConspectusThe manipulation of strained rings is a powerful strategy for accessing the valuable chemical frameworks present in natural products and active pharmaceutical ingredients. Aziridines, the smallest N-containing heterocycles, have long served as building blocks for constructing more complex amine-containing scaffolds. Traditionally, the reactivity of typical aziridines has been focused on ring-opening by nucleophiles or the formation of 1,3-dipoles.

View Article and Find Full Text PDF

Allylic C-H oxygenation of unactivated internal olefins by the Cu/azodiformate catalyst system.

Nat Commun

January 2025

Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, PR China.

Allylic ethers and alcohols are essential structural motifs commonly present in natural products and pharmaceuticals. Direct allylic C-H oxygenation of internal alkenes is one of the most direct methods, bypassing the necessity for an allylic leaving group that is needed in the traditional Tsuji-Trost reaction. Herein, we develop an efficient and practical method for synthesizing (E)-allyl ethers from readily available internal alkenes and alcohols or phenols via selective allylic C-H oxidation.

View Article and Find Full Text PDF

Acrylonitrile-butadiene-styrene (ABS) is a thermoplastic copolymer commonly used in the electronics, automotive, and construction industries. In the aquatic environment, the formation of microplastics from larger-sized plastic waste occurs naturally, induced by physical, chemical, and biological processes that promote the aging of these particles. Here, we investigated the interactions between the freshwater amphipod and ABS microplastics (10-20 μm) (pristine and after accelerated aging) over 7 days of exposure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!