Background: Platelets have the highest bacterial contamination risk of all blood components, and septic transfusion reactions remain a problem. A good estimate of contamination rates could provide information about residual risk and inform optimal testing strategies. We performed a systematic review and meta-analysis of platelet contamination rates by primary culture.
Study Design And Methods: A literature search in December 2019 identified articles on platelet contamination rates using primary culture. We used meta-analysis to estimate the overall rate of contamination and meta-regression to identify heterogeneity. We studied the following sources of heterogeneity: collection method, sample volume, positivity criteria, and study date. Contamination rate estimates were obtained for apheresis (AP), platelet rich plasma (PRP), and buffy coat (BC) collection methods.
Results: The search identified 6102 studies, and 22 were included for meta-analysis. Among these 22 studies, there were 21 AP cohorts (4,072,022 components), 4 PRP cohorts (138,869 components), and 15 BC cohorts (1,474,679 components). The overall mean contamination rate per 1000 components was 0.51 (95% CI: 0.38-0.67) including AP (0.23, 95% CI: 0.18-0.28), PRP, (0.38, 95% CI: 0.15-0.70), and BC (1.12, 95% CI: 0.51-1.96). There was considerable variability within each collection method. Sample volume, positivity criteria, and publication year were significant sources of heterogeneity.
Conclusion: The bacterial contamination rate of platelets by primary culture is 1 in 1961. AP and PRP components showed a lower contamination rate than BC components. There is clinically significant between-study variability for each method. Larger sample volumes increased sensitivity, and bacterial contamination rates have decreased over time.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/trf.15762 | DOI Listing |
Ecotoxicology
January 2025
Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL, USA.
Songbird reproductive success can decline from consuming mercury-contaminated aquatic insects, but assessments of hydrologic conditions influencing songbird mercury exposure are lacking. We monitored breast feather total mercury (THg) concentrations and reproductive success in the U.S.
View Article and Find Full Text PDFTurk Arch Pediatr
January 2025
Department of Pediatric Pulmonology, Marmara University School of Medicine, İstanbul, Türkiye.
Objective: Nebulizer contamination has potential harmful effects on the respiratory system. The aim was to investigate the contamination profile of the nebulizers in cystic fibrosis patients and evaluate the relationship between hygiene practices and microbial contamination. Materials and Methods: Microbiological swab samples were taken from 3 different locations of the nebulizers of 102 patients.
View Article and Find Full Text PDFCureus
December 2024
Department of Pharmacy Practice, Ratnam Institute of Pharmacy, Nellore, IND.
Introduction The success of surgical procedures is becoming more threatened by the advent of multi-drug resistant (MDR) bacterial strains, sometimes known as superbugs. These resistant microorganisms frequently cause post-surgical infections, which raise morbidity, death, and medical expenses. With an emphasis on resistant strains, this seeks to create an antibiogram and a thorough microbiological profile of surgical infections in order to help choose the most effective antimicrobial therapy.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
School of Control Engineering, Northeastern University at Qinhuangdao, Qinhuangdao, 066004, PR China; Hebei Key Laboratory of Micro-Nano Precision Optical Sensing and Measurement Technology, Qinhuangdao, 066004, PR China. Electronic address:
Background: Fractionation of microalgal cells has important applications in producing pharmaceuticals and treating diseases. Multiple types of microalgal cells generally coexist in the oceans or lakes and are easily contaminated by microplastics and bacteria. Therefore, it is of paramount significance to develop an effective fractionation approach for microalgal cells for biological applications.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Food Laboratory of Zhongyuan, Luohe, 462000, Henan Province, PR China.
Background: Edible oils are susceptible to contamination with polycyclic aromatic hydrocarbons (PAHs) throughout production, storage, and transportation processes due to their lipophilic nature. The necessity of quantifying PAHs present in complex oil matrices at trace levels, which bind strongly to impurities in oil matrices, poses a major challenge to the accurate quantification of these contaminants. Therefore, the development of straightforward and effective methods for the separation and enrichment of PAHs in oil samples prior to instrumental analysis is paramount to guaranteeing food safety.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!