Although the microtubule-associated protein tau is well studied in human neurodegeneration, the role of tau in neoplastic brain diseases is not well understood. Recently, studies have shown tau mRNA expression is associated with improved survival in human infiltrating gliomas. However, the biologic basis of this association is largely unexplored. Using 2 independent publicly available mRNA databases, we show that high tau mRNA expression is associated with improved patient survival in infiltrating gliomas. Higher tau protein expression is also associated with improved patient prognosis in infiltrating gliomas by immunohistochemical staining of tissue microarrays. This prognostic association is in part due to higher tau mRNA and protein expression in IDH-mutant infiltrating astrocytomas. Expression of tau in an IDH-wildtype glioblastoma cell line selectively impairs cell migration in assays designed to mimic tumor invasion. These findings suggest that tau expression is not only associated with IDH mutation status but also may contribute to improved patient outcomes by impairing tumor invasion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/jnen/nlaa013 | DOI Listing |
Adv Healthc Mater
January 2025
State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, P. R. China.
Glioma, the deadly primary intracranial tumor, poses challenges in clinical treatment due to its infiltrative growth and resistance to radiation. Oncolytic virus therapy holds potential for the treatment of malignant gliomas, but its application is impeded by the requirement for intracranial injections due to the presence of blood-brain barrier (BBB). In this study, to overcome this limitation, the study develops a nanocapsule encapsulating the recombinant oncolytic virus EV-A71-miR124T, enabling the treatment of glioma through intravenous administration.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Neurosurgery, Changde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City), Changde, 415003, Hunan, China.
Purpose: Glioma is the most prevalent tumor of the central nervous system. The poor clinical outcomes and limited therapeutic efficacy underscore the urgent need for early diagnosis and an optimized prognostic approach for glioma. Therefore, the aim of this study was to identify sensitive biomarkers for glioma.
View Article and Find Full Text PDFActa Neuropathol Commun
January 2025
Sid Faithfull Brain Cancer Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
Glioblastoma (GBM) is a highly aggressive adult brain cancer, characterised by poor prognosis and a dismal five-year survival rate. Despite significant knowledge gains in tumour biology, meaningful advances in patient survival remain elusive. The field of neuro-oncology faces many disease obstacles, one being the paucity of faithful models to advance preclinical research and guide personalised medicine approaches.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Heping District, Shenyang 110001, China.
Magnetic resonance imaging (MRI) currently serves as the primary diagnostic method for glioma detection and monitoring. The integration of neurosurgery, radiation therapy, pathology, and radiology in a multi-disciplinary approach has significantly advanced its diagnosis and treatment. However, the prognosis remains unfavorable due to treatment resistance, inconsistent response rates, and high recurrence rates after surgery.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Biochemistry, Molecular Biology B and Immunology Department, University of Murcia (UMU), 30120 Murcia, Spain.
Glioblastoma (GB) is one of the most aggressive and treatment-resistant cancers due to its complex tumor microenvironment (TME). We previously showed that GB progression is dependent on the aberrant induction of chaperone-mediated autophagy (CMA) in pericytes (PCs), which promotes TME immunosuppression through the PC secretome. The secretion of extracellular matrix (ECM) proteins with anti-tumor (Lumican) and pro-tumoral (Osteopontin, OPN) properties was shown to be dependent on the regulation of GB-induced CMA in PCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!