Surface Plasmon-Enhanced Optical Formaldehyde Sensor Based on CdSe@ZnS Quantum Dots.

ACS Sens

Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Centre for Optical and Electromagnetic Research, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.

Published: April 2020

For the first time, a reproducible surface plasmon-enhanced optical sensor for the detection of gaseous formaldehyde was proposed, which was fabricated by depositing a mixture of CdSe@ZnS quantum dots (QDs), fumed silica (FS), and gold nanoparticles (GNs) on the surface of a silica sphere array to meet the urgent requirement of a rapid, sensitive, and highly convenient formaldehyde detection method. Because of the spectral overlap between QDs and GNs, plasmon-enhanced fluorescence was observed in the film of QDs/FS/GNs. When exposed to formaldehyde molecules, the enhanced fluorescence was quenched linearly with the increase of formaldehyde concentration in the range of 0.5-2.0 ppm. The reason is attributed to the nonradiative electron transfer from QDs to the carbonyl of formaldehyde molecules with the assistance of amino groups. Our results demonstrate that the designed sensors are capable of detecting ultralow concentration gaseous formaldehyde at room temperature with a fast response-recovery time and excellent selectivity, stability, and reproducibility. This work provides a simple and low-cost approach for optical formaldehyde sensor fabrication and shows promising applications in environmental detection.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acssensors.9b02462DOI Listing

Publication Analysis

Top Keywords

surface plasmon-enhanced
8
plasmon-enhanced optical
8
formaldehyde
8
optical formaldehyde
8
formaldehyde sensor
8
cdse@zns quantum
8
quantum dots
8
gaseous formaldehyde
8
formaldehyde molecules
8
sensor based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!