For the first time, a reproducible surface plasmon-enhanced optical sensor for the detection of gaseous formaldehyde was proposed, which was fabricated by depositing a mixture of CdSe@ZnS quantum dots (QDs), fumed silica (FS), and gold nanoparticles (GNs) on the surface of a silica sphere array to meet the urgent requirement of a rapid, sensitive, and highly convenient formaldehyde detection method. Because of the spectral overlap between QDs and GNs, plasmon-enhanced fluorescence was observed in the film of QDs/FS/GNs. When exposed to formaldehyde molecules, the enhanced fluorescence was quenched linearly with the increase of formaldehyde concentration in the range of 0.5-2.0 ppm. The reason is attributed to the nonradiative electron transfer from QDs to the carbonyl of formaldehyde molecules with the assistance of amino groups. Our results demonstrate that the designed sensors are capable of detecting ultralow concentration gaseous formaldehyde at room temperature with a fast response-recovery time and excellent selectivity, stability, and reproducibility. This work provides a simple and low-cost approach for optical formaldehyde sensor fabrication and shows promising applications in environmental detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.9b02462 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!