This data article contains data related to the research article entitled "α-Humulene inhibits hepatocellular carcinoma (HCC) cell proliferation and induces apoptosis through the inhibition of Akt signaling" (Chen et al., 2019) [1]. The article focuses on the antiproliferation of α-Humulene (HML) and the mechanisms involved in HCC cells inhibition. In this data, cytotoxicity of HML in several HCC cell lines are reported, together with the changes in proteins involving in p53 and Akt downstream. Weight curve, blood biochemical parameters and organ indices from HepG2-bearing nude mouse model are also provided, suggesting the potential side effects in HML administration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7063110 | PMC |
http://dx.doi.org/10.1016/j.dib.2020.105325 | DOI Listing |
Ann Transl Med
December 2024
Institute for Tumor Immunology, Center for Tumor Biology and Immunology, Philipps-University Marburg, Marburg, Germany.
One of the most important targets for natural killer (NK) cell-mediated therapy is the induction of natural killer group 2D ligand (NKG2D-L) expression. APTO253 is a small molecule that selectively kills acute myeloid leukemia (AML) cells, and it has been reported that APTO253 can induce Krüppel-like factor 4 (KLF4) expression and downregulate c-MYC expression. Recently, we discovered a novel role of APTO253 in modulating the NK cell response by inducing surface expression of NKG2D-Ls, especially MHC class I polypeptide-related sequence A (MICA), in AML cells.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Ceará 60714-903, Brazil.
Leishmaniasis is a chronic inflammatory zoonotic illness caused by protozoan flagellates belonging to the genus. Current data suggest that over 1 billion people worldwide are susceptible to infection, primarily in tropical and subtropical countries, where up to 2 million new cases are reported annually. Therefore, the development of a vaccine is crucial to combating this disease.
View Article and Find Full Text PDFTransl Cancer Res
December 2024
Department of Urology, Affiliated Hospital of Chifeng University, Chifeng, China.
Background: Bladder urothelial carcinoma (BLCA) is globally recognized as a prevalent malignancy. Its treatment remains challenging due to the extensive morbidity, high mortality rates, and compromised quality of life from postoperative complications and the lack of specific molecular targets. Our aim was to establish a prognostic model to evaluate the prognostic significance, assess immunotherapy responses, and determine drug susceptibility in patients with BLCA.
View Article and Find Full Text PDFBrain Commun
January 2025
Neuromuscular Department, Motor Neuron Disease Centre, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.
Neuroinflammation impacts on the progression of amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disorder. Specialized pro-resolving mediators trigger the resolution of inflammation. We investigate the specialized pro-resolving mediator blood profile and their receptors' expression in peripheral blood mononuclear cells in relation to survival in ALS.
View Article and Find Full Text PDFImmunol Res
January 2025
Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, 88 Olympic-Ro, 43-Gil, Songpa-Gu, Seoul, 05505, Korea.
Recently, a strategy involving the engineering of chemokine receptors on immune cells was developed to optimize adoptive cell therapy (ACT) for solid tumors. Given the variability in chemokine secretion among different tumor types, identifying and modulating the appropriate chemokine receptors is crucial. In this study, we utilized extensive RNA sequencing data from both tumor tissues from The Cancer Genome Atlas and normal tissues from Genotype-Tissue Expression to investigate the expression profiles of chemokines.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!